TY - JOUR
T1 - Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses
AU - Dos Santos Castro, Lilian
AU - Pedersoli, Wellington Ramos
AU - Antoniêto, Amanda Cristina Campos
AU - Steindorff, Andrei Stecca
AU - Silva-Rocha, Rafael
AU - Martinez-Rossi, Nilce M.
AU - Rossi, Antonio
AU - Brown, Neil Andrew
AU - Goldman, Gustavo H.
AU - Faça, Vitor M.
AU - Persinoti, Gabriela F.
AU - Silva, Roberto Nascimento
PY - 2014/3/21
Y1 - 2014/3/21
N2 - Background: The filamentous fungus Trichoderma reesei is a major producer of lignocellulolytic enzymes utilized by bioethanol industries. However, to achieve low cost second generation bioethanol production on an industrial scale an efficient mix of hydrolytic enzymes is required for the deconstruction of plant biomass. In this study, we investigated the molecular basis for lignocellulose-degrading enzyme production T. reesei during growth in cellulose, sophorose, and glucose. Results: We examined and compared the transcriptome and differential secretome (2D-DIGE) of T. reesei grown in cellulose, sophorose, or glucose as the sole carbon sources. By applying a stringent cut-off threshold 2,060 genes were identified as being differentially expressed in at least one of the respective carbon source comparisons. Hierarchical clustering of the differentially expressed genes identified three possible regulons, representing 123 genes controlled by cellulose, 154 genes controlled by sophorose and 402 genes controlled by glucose. Gene regulatory network analyses of the 692 genes differentially expressed between cellulose and sophorose, identified only 75 and 107 genes as being specific to growth in sophorose and cellulose, respectively. 2D-DIGE analyses identified 30 proteins exclusive to sophorose and 37 exclusive to cellulose. A correlation of 70.17% was obtained between transcription and secreted protein profiles. Conclusions: Our data revealed new players in cellulose degradation such as accessory proteins with non-catalytic functions secreted in different carbon sources, transporters, transcription factors, and CAZymes, that specifically respond in response to either cellulose or sophorose.
AB - Background: The filamentous fungus Trichoderma reesei is a major producer of lignocellulolytic enzymes utilized by bioethanol industries. However, to achieve low cost second generation bioethanol production on an industrial scale an efficient mix of hydrolytic enzymes is required for the deconstruction of plant biomass. In this study, we investigated the molecular basis for lignocellulose-degrading enzyme production T. reesei during growth in cellulose, sophorose, and glucose. Results: We examined and compared the transcriptome and differential secretome (2D-DIGE) of T. reesei grown in cellulose, sophorose, or glucose as the sole carbon sources. By applying a stringent cut-off threshold 2,060 genes were identified as being differentially expressed in at least one of the respective carbon source comparisons. Hierarchical clustering of the differentially expressed genes identified three possible regulons, representing 123 genes controlled by cellulose, 154 genes controlled by sophorose and 402 genes controlled by glucose. Gene regulatory network analyses of the 692 genes differentially expressed between cellulose and sophorose, identified only 75 and 107 genes as being specific to growth in sophorose and cellulose, respectively. 2D-DIGE analyses identified 30 proteins exclusive to sophorose and 37 exclusive to cellulose. A correlation of 70.17% was obtained between transcription and secreted protein profiles. Conclusions: Our data revealed new players in cellulose degradation such as accessory proteins with non-catalytic functions secreted in different carbon sources, transporters, transcription factors, and CAZymes, that specifically respond in response to either cellulose or sophorose.
KW - Bioethanol
KW - Cellulases
KW - DIGE
KW - RNA-seq
KW - Trichoderma reesei
UR - http://www.scopus.com/inward/record.url?scp=84899073611&partnerID=8YFLogxK
U2 - 10.1186/1754-6834-7-41
DO - 10.1186/1754-6834-7-41
M3 - Article
AN - SCOPUS:84899073611
SN - 1754-6834
VL - 7
JO - Biotechnology for Biofuels
JF - Biotechnology for Biofuels
IS - 1
M1 - 41
ER -