Abstract
Feature reduction is an effective way to improve the classification performance when machine learning methods are used in gait analysis. In this paper, we proposed a novel hybrid feature reduction method (MSNRPCA) based on the combination of feature ranking with principle component analysis (PCA). Three feature reduction methods, namely, feature ranking based the value of signal to noise ratio (MSNR), PCA and the proposed hybrid approach (MSNRPCA), were examined in two gait analysis problems. One gait analysis problem is to differentiate the patients with Neurodegenerative disease from the controls based on the gait data collected by footswitches. The other problem is to discriminate the patients with complex regional pain syndrome (CRPS) from controls based on the gait data collected by an accelerometer. Results showed that the proposed MSNRPCA achieved best classification performance in two gait datasets. In footswitch data, the highest accuracy (81.78%) was obtained using a feature subset with 4 features generated from original 10 features by MSNRPCA. In the accelerometer dataset, classification with three features generated from 17 features by MSNRPCA achieved the best performance with an accuracy of 100%.
Original language | English |
---|---|
Title of host publication | 2010 International Conference on Machine Learning and Cybernetics, ICMLC 2010 |
Place of Publication | Piscataway, U. S. A. |
Publisher | IEEE |
Pages | 494-499 |
Number of pages | 6 |
ISBN (Electronic) | 978-1-4244-6527-9 |
ISBN (Print) | 9781424465262 |
DOIs | |
Publication status | Published - Jul 2010 |
Event | 2010 International Conference on Machine Learning and Cybernetics, ICMLC 2010, July 11, 2010 - July 14, 2010 - Qingdao, China Duration: 1 Jul 2010 → … |
Conference
Conference | 2010 International Conference on Machine Learning and Cybernetics, ICMLC 2010, July 11, 2010 - July 14, 2010 |
---|---|
Country/Territory | China |
City | Qingdao |
Period | 1/07/10 → … |