Coherent Raman detected electron spin resonance spectroscopy of metalloproteins: linking electron spin resonance and magnetic circular dichroism

S J Bingham, Daniel Wolverson, A J Thomson

Research output: Contribution to journalArticlepeer-review

2 Citations (SciVal)

Abstract

The simultaneous excitation of paramagnetic molecules with optical (laser) and microwave radiation in the presence of a magnetic field can cause an amplitude, or phase, modulation of the transmitted light at the microwave frequency. The detection of this modulation indicates the presence of coupled optical and ESR transitions. The phenomenon can be viewed as a coherent Raman effect or, in most cases, as a microwave frequency modulation of the magnetic circular dichroism by the precessing magnetization. By allowing the optical and magnetic properties of a transition metal ion centre to be correlated, it becomes possible to deconvolute the overlapping optical or ESR spectra of multiple centres in a protein or of multiple chemical forms of a particular centre. The same correlation capability also allows the relative orientation of the magnetic and optical anisotropies of each species to be measured, even when the species cannot be obtained in a crystalline form. Such measurements provide constraints on electronic structure calculations. The capabilities of the method are illustrated by data from the dimeric mixed-valence Cu-A centre of nitrous oxide reductase (N2OR) from Paracoccus pantotrophus.
Original languageEnglish
Pages (from-to)1187-1190
Number of pages4
JournalBiochemical Society Transactions
Volume36
Issue number6
DOIs
Publication statusPublished - Dec 2008

Keywords

  • magnetic circular
  • coherent Raman
  • dichroism (MCD)
  • electron spin resonance (ESR)
  • Cu-A

Fingerprint

Dive into the research topics of 'Coherent Raman detected electron spin resonance spectroscopy of metalloproteins: linking electron spin resonance and magnetic circular dichroism'. Together they form a unique fingerprint.

Cite this