Coherent optical manipulation of a single spin state in a charged quantum dot: Theory and modelling

G Slavcheva

Research output: Chapter or section in a book/report/conference proceedingChapter in a published conference proceeding


The optically-induced coherent spin dynamics in a charged quantum dot (QD) is studied theoretically using a new dynamical model for rigorous description of circularly polarized ultrashort optical pulse resonant interactions with the electron-trion system. Generalized pseudospin master equation is derived for description of the time evolution of spin coherences and spin populations in terms of the real state pseudospin (coherence) vector including dissipation in the system through spin relaxation processes. The equation is solved in the time domain self-consistently with the vector Maxwell equations for the optical wave propagation coupled to it via macroscopic medium polarization. Using the model the long-lived electron spin coherence left behind a single resonant ultrashort optical excitation of the electron-trion transition in a charged QD is simulated in the lowand high-intensity Rabi oscillations regime. Signatures of the polarized photoluminescence (PL) resulting from the numerical simulations, such as the appearance of a second echo pulse after the excitation and a characteristic PL trace shape, specific for initial spin-up orientation, are discussed for realization of high-fidelity schemes for coherent readout of a single spin polarization state.
Original languageEnglish
Title of host publicationOptoelectronic Devices: Physics, Fabrication, and Application IV
EditorsJoachim Piprek, Jian J Wang
Place of PublicationBoston, MA
Number of pages10
Publication statusPublished - 9 Sept 2007

Publication series

NameProceedings of SPIE


Dive into the research topics of 'Coherent optical manipulation of a single spin state in a charged quantum dot: Theory and modelling'. Together they form a unique fingerprint.

Cite this