TY - GEN
T1 - CoDA
T2 - 18th European Conference on Computer Vision, ECCV 2024
AU - Gong, Ziyang
AU - Li, Fuhao
AU - Deng, Yupeng
AU - Bhattacharjee, Deblina
AU - Ma, Xianzheng
AU - Zhu, Xiangwei
AU - Ji, Zhenming
PY - 2024/10/29
Y1 - 2024/10/29
N2 - Unsupervised Domain Adaptation (UDA) aims to adapt models from labeled source domains to unlabeled target domains. When adapting to adverse scenes, existing UDA methods fail to perform well due to the lack of instructions, leading their models to overlook discrepancies within all adverse scenes. To tackle this, we propose CoDA which instructs models to distinguish, focus, and learn from these discrepancies at scene and image levels. Specifically, CoDA consists of a Chain-of-Domain (CoD) strategy and a Severity-Aware Visual Prompt Tuning (SAVPT) mechanism. CoD focuses on scene-level instructions to divide all adverse scenes into easy and hard scenes, guiding models to adapt from source to easy domains with easy scene images, and then to hard domains with hard scene images, thereby laying a solid foundation for whole adaptations. Building upon this foundation, we employ SAVPT to dive into more detailed image-level instructions to boost performance. SAVPT features a novel metric Severity that divides all adverse scene images into low-severity and high-severity images. Then Severity directs visual prompts and adapters, instructing models to concentrate on unified severity features instead of scene-specific features, without adding complexity to the model architecture. CoDA achieves SOTA performances on widely-used semantic segmentation benchmarks under all adverse scenes. Notably, CoDA outperforms the existing ones by 4.6%, and 10.3% mIoU on the Foggy Driving, and Foggy Zurich benchmarks, respectively. Our code is available at https://github.com/Cuzyoung/CoDA.
AB - Unsupervised Domain Adaptation (UDA) aims to adapt models from labeled source domains to unlabeled target domains. When adapting to adverse scenes, existing UDA methods fail to perform well due to the lack of instructions, leading their models to overlook discrepancies within all adverse scenes. To tackle this, we propose CoDA which instructs models to distinguish, focus, and learn from these discrepancies at scene and image levels. Specifically, CoDA consists of a Chain-of-Domain (CoD) strategy and a Severity-Aware Visual Prompt Tuning (SAVPT) mechanism. CoD focuses on scene-level instructions to divide all adverse scenes into easy and hard scenes, guiding models to adapt from source to easy domains with easy scene images, and then to hard domains with hard scene images, thereby laying a solid foundation for whole adaptations. Building upon this foundation, we employ SAVPT to dive into more detailed image-level instructions to boost performance. SAVPT features a novel metric Severity that divides all adverse scene images into low-severity and high-severity images. Then Severity directs visual prompts and adapters, instructing models to concentrate on unified severity features instead of scene-specific features, without adding complexity to the model architecture. CoDA achieves SOTA performances on widely-used semantic segmentation benchmarks under all adverse scenes. Notably, CoDA outperforms the existing ones by 4.6%, and 10.3% mIoU on the Foggy Driving, and Foggy Zurich benchmarks, respectively. Our code is available at https://github.com/Cuzyoung/CoDA.
KW - Adverse Scenes
KW - Chain-of-Domain
KW - Discrepancy
KW - Semantic Segmentation
KW - Severity
KW - Visual Prompt Tuning
UR - http://www.scopus.com/inward/record.url?scp=85209891476&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-72980-5_8
DO - 10.1007/978-3-031-72980-5_8
M3 - Chapter in a published conference proceeding
AN - SCOPUS:85209891476
SN - 9783031729799
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 130
EP - 148
BT - Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
A2 - Leonardis, Aleš
A2 - Ricci, Elisa
A2 - Roth, Stefan
A2 - Russakovsky, Olga
A2 - Sattler, Torsten
A2 - Varol, Gül
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 29 September 2024 through 4 October 2024
ER -