CoDA: Instructive Chain-of-Domain Adaptation with Severity-Aware Visual Prompt Tuning

Ziyang Gong, Fuhao Li, Yupeng Deng, Deblina Bhattacharjee, Xianzheng Ma, Xiangwei Zhu, Zhenming Ji

Research output: Chapter or section in a book/report/conference proceedingChapter in a published conference proceeding

Abstract

Unsupervised Domain Adaptation (UDA) aims to adapt models from labeled source domains to unlabeled target domains. When adapting to adverse scenes, existing UDA methods fail to perform well due to the lack of instructions, leading their models to overlook discrepancies within all adverse scenes. To tackle this, we propose CoDA which instructs models to distinguish, focus, and learn from these discrepancies at scene and image levels. Specifically, CoDA consists of a Chain-of-Domain (CoD) strategy and a Severity-Aware Visual Prompt Tuning (SAVPT) mechanism. CoD focuses on scene-level instructions to divide all adverse scenes into easy and hard scenes, guiding models to adapt from source to easy domains with easy scene images, and then to hard domains with hard scene images, thereby laying a solid foundation for whole adaptations. Building upon this foundation, we employ SAVPT to dive into more detailed image-level instructions to boost performance. SAVPT features a novel metric Severity that divides all adverse scene images into low-severity and high-severity images. Then Severity directs visual prompts and adapters, instructing models to concentrate on unified severity features instead of scene-specific features, without adding complexity to the model architecture. CoDA achieves SOTA performances on widely-used semantic segmentation benchmarks under all adverse scenes. Notably, CoDA outperforms the existing ones by 4.6%, and 10.3% mIoU on the Foggy Driving, and Foggy Zurich benchmarks, respectively. Our code is available at https://github.com/Cuzyoung/CoDA.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
EditorsAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
PublisherSpringer Science and Business Media Deutschland GmbH
Pages130-148
Number of pages19
ISBN (Electronic)9783031729805
ISBN (Print)9783031729799
DOIs
Publication statusPublished - 29 Oct 2024
Event18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: 29 Sept 20244 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15135 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period29/09/244/10/24

Keywords

  • Adverse Scenes
  • Chain-of-Domain
  • Discrepancy
  • Semantic Segmentation
  • Severity
  • Visual Prompt Tuning

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'CoDA: Instructive Chain-of-Domain Adaptation with Severity-Aware Visual Prompt Tuning'. Together they form a unique fingerprint.

Cite this