Chemical amplification of magnetic field effects relevant to avian magnetoreception

Daniel Kattnig, Emrys Evans, Victoire Dejean, Charlotte Dodson, Mark Wallace, Stuart Mackenzie, Christiane Timmel, Peter Hore

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, k(B)T, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin-tryptophan and flavin-ascorbic acid photocycles and the closely related intramolecular flavin-tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor.
Original languageEnglish
Pages (from-to)384-391
Number of pages8
JournalNature Chemistry
Volume8
Early online date1 Feb 2016
DOIs
Publication statusPublished - 1 Feb 2016

    Fingerprint

Cite this

Kattnig, D., Evans, E., Dejean, V., Dodson, C., Wallace, M., Mackenzie, S., ... Hore, P. (2016). Chemical amplification of magnetic field effects relevant to avian magnetoreception. Nature Chemistry, 8, 384-391. https://doi.org/10.1038/NCHEM.2447