Characterization of virulence properties in the C. parapsilosis sensu lato species

Tibor Németh, Adél Tóth, Judit Szenzenstein, Péter Horváth, Joshua D Nosanchuk, Zsuzsanna Grózer, Renáta Tóth, Csaba Papp, Zsuzsanna Hamari, Csaba Vágvölgyi, Attila Gácser

Research output: Contribution to journalArticlepeer-review

60 Citations (SciVal)

Abstract

The C. parapsilosis sensu lato group involves three closely related species, C. parapsilosis sensu stricto, C. orthopsilosis and C. metapsilosis. Although their overall clinical importance is dramatically increasing, there are few studies regarding the virulence properties of the species of the psilosis complex. In this study, we tested 63 C. parapsilosis sensu stricto, 12 C. metapsilosis and 18 C. orthopsilosis isolates for the ability to produce extracellular proteases, secrete lipases and form pseudohyphae. Significant differences were noted between species, with the C. metapsilosis strains failing to secrete lipase or to produce pseudohyphae. Nine different clinical isolates each of C. parapsilosis sensu stricto, C. orthopsilosis and C. metapsilosis were co-cultured with immortalized murine or primary human macrophages. C. parapsilosis sensu stricto isolates showed a significantly higher resistance to killing by primary human macrophages compared to C. orthopsilosis and C. metapsilosis isolates. In contrast, the killing of isolates by J774.2 mouse macrophages did not differ significantly between species. However, C. parapsilosis sensu stricto isolates induced the most damage to murine and human macrophages, and C. metapsilosis strains were the least toxic. Furthermore, strains that produced lipase or pseudohyphae were most resistant to macrophage-mediated killing and produced the most cellular damage. Finally, we used 9 isolates of each of the C. parapsilosis sensus lato species to examine their impact on the survival of Galleriamellonella larvae. The mortality rate of G. mellonella larvae infected with C. metapsilosis isolates was significantly lower than those infected with C. parapsilosis sensu stricto or C. orthopsilosis strains. Taken together, our findings demonstrate that C. metapsilosis is indeed the least virulent member of the psilosis group, and also highlight the importance of pseudohyphae and secreted lipases during fungal-host interactions.

Original languageEnglish
Pages (from-to)e68704
JournalPLoS ONE
Volume8
Issue number7
DOIs
Publication statusPublished - 9 Jul 2013

Keywords

  • Animals
  • Candida
  • Cell Line
  • Host-Pathogen Interactions
  • Humans
  • Leukocytes, Mononuclear
  • Lipase
  • Macrophages
  • Mice
  • Peptide Hydrolases
  • Phagocytosis
  • Virulence
  • Virulence Factors

Fingerprint

Dive into the research topics of 'Characterization of virulence properties in the C. parapsilosis sensu lato species'. Together they form a unique fingerprint.

Cite this