Characterization of three amino-functionalized surfaces and evaluation of antibody immobilization for the multiplex detection of tumor markers involved in colorectal cancer

Z. Yang, Y. Chevolot, T. Géhin, V. Dugas, N. Xanthopoulos, V. Laporte, T. Delair, Y. Ataman-Önal, G. Choquet-Kastylevsky, E. Souteyrand, E. Laurenceau

Research output: Contribution to journalArticlepeer-review

30 Citations (SciVal)

Abstract

Antibody microarrays are powerful and high-throughput tools for screening and identifying tumor markers from small sample volumes of only a few microliters. Optimization of surface chemistry and spotting conditions are crucial parameters to enhance antibodies' immobilization efficiency and to maintain their biological activity. Here, we report the implementation of an antibody microarray for the detection of tumor markers involved in colorectal cancer. Three-dimensional microstructured glass slides were functionalized with three different aminated molecules ((3-Aminopropyl)dimethylethoxysilane (APDMES), Jeffamine, and chitosan) varying in their chain length, their amine density, and their hydrophilic/hydrophobic balance. The physicochemical properties of the resulting surfaces were characterized. Antibody immobilization efficiency through physical interaction was studied as a function of surface properties as well as a function of the immobilization conditions. The results show that surface energy, steric hindrance, and pH of spotting buffer have great effects on protein immobilization. Under optimal conditions, biological activities of four immobilized antitumor marker antibodies were evaluated in multiplex immunoassay for the detection of the corresponding tumor markers. Results indicated that the chitosan functionalized surface displayed the highest binding capacity and allowed to retain maximal biological activity of the four tested antibody/antigen systems. Thus, we successfully demonstrated the application of amino-based surface modification for antibody microarrays to efficiently detect tumor markers. © 2013 American Chemical Society.
Original languageEnglish
Pages (from-to)1498-1509
Number of pages12
JournalLangmuir
Volume29
Issue number5
Early online date10 Jan 2013
DOIs
Publication statusPublished - 5 Feb 2013

Fingerprint

Dive into the research topics of 'Characterization of three amino-functionalized surfaces and evaluation of antibody immobilization for the multiplex detection of tumor markers involved in colorectal cancer'. Together they form a unique fingerprint.

Cite this