Abstract
This paper investigates a change-point estimation problem in the context of high-dimensional Markov Random Field models. Change-points represent a key feature in many dynamically evolving network structures. The change-point estimate is obtained by maximizing a profile penalized pseudo-likelihood function under a sparsity assumption. We also derive a tight bound for the estimate, up to a logarithmic factor, even in settings where the number of possible edges in the network far exceeds the sample size. The performance of the proposed estimator is evaluated on synthetic data sets and is also used to explore voting patterns in the US Senate in the 1979-2012 period.
Original language | English |
---|---|
Pages (from-to) | 1187 - 1206 |
Number of pages | 20 |
Journal | Journal of the Royal Statistical Society: Series B - Statistical Methodology |
Volume | 79 |
Issue number | 4 |
Early online date | 26 Sept 2016 |
DOIs | |
Publication status | Published - 1 Sept 2017 |
Bibliographical note
41 pages, 7 figuresKeywords
- stat.ME
Fingerprint
Dive into the research topics of 'Change-Point Estimation in High-Dimensional Markov Random Field Models'. Together they form a unique fingerprint.Profiles
-
Sandipan Roy
- Department of Mathematical Sciences - Senior Lecturer
- Centre for Mathematics and Algorithms for Data (MAD)
- EPSRC Centre for Doctoral Training in Statistical Applied Mathematics (SAMBa)
Person: Research & Teaching