Projects per year
Abstract
The energy hub is a powerful conceptualization of how to acquire, convert, and distribute energy resources in the smart city. However, uncertainties such as intermittent renewable energy injection present challenges to energy hub optimization. This paper solves the optimal energy flow of adjacent energy hubs to minimize the energy costs by utilizing the flexibility of energy resources in a smart city with uncertain renewable generation. It innovatively models the power and gas flows between hubs using chance constraints, thus permitting the temporary overloading acceptable on real energy networks. This novelty not only ensures system security but also helps reduce or defer network investment. By restricting the probability of chance constraints over a specific level, the energy hub optimization is formulated as a multiperiod stochastic problem with the total generation cost as the objective. Cornish-Fisher expansion is utilized to incorporate the chance constraints into the optimization, which transforms the stochastic problem into a deterministic problem. The interior-point method is then applied to resolve the developed model. The proposed chance-constrained optimization is demonstrated on a three-hub system and results extensively illustrate the impact of chance constraints on power and gas flows. This work can benefit energy hub operators by maximizing renewable energy penetration at the lowest cost in a smart city.
Original language | English |
---|---|
Pages (from-to) | 1402-1412 |
Number of pages | 11 |
Journal | IEEE Transactions on Industrial Electronics |
Volume | 66 |
Issue number | 2 |
Early online date | 14 Aug 2018 |
DOIs | |
Publication status | Published - 28 Feb 2019 |
Keywords
- Chance-constrained programming (CCP)
- Cornish-Fisher expansion
- energy hub
- optimal flow
ASJC Scopus subject areas
- Control and Systems Engineering
- Electrical and Electronic Engineering
Fingerprint
Dive into the research topics of 'Chance-Constrained Optimization for MultiEnergy Hub Systems in a Smart City'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Fellowship - Multi-Vector Energy Distribution System Modelling and Optimisation with Integrated Demand Side Response
Gu, C. (PI)
Engineering and Physical Sciences Research Council
1/09/14 → 31/08/17
Project: Research council
Profiles
-
Chenghong Gu
- Department of Electronic & Electrical Engineering - Reader
- Centre for Sustainable Energy Systems (SES)
- Centre for Climate Adaptation & Environment Research (CAER)
- Centre for Regenerative Design & Engineering for a Net Positive World (RENEW)
- IAAPS: Propulsion and Mobility
Person: Research & Teaching, Core staff, Affiliate staff