Projects per year
Abstract
The controlled delivery of micronutrients to soil and plants is essential to increase agricultural yields. However, this is today achieved using fossil fuel-derived plastic carriers, posing environmental risks and contributing to global carbon emissions. In this work, a novel and efficient way to prepare biodegradable zinc-impregnated cellulose acetate beads for use as controlled release fertilizers is presented. Cellulose acetate solutions in DMSO were dropped into aqueous antisolvent solutions of different zinc salts. The droplets underwent phase inversion, forming solid cellulose acetate beads containing zinc, as a function of zinc salt type and concentration. Even higher values of zinc uptake (up to 15.5%) were obtained when zinc acetate was added to the cellulose acetate-DMSO solution, prior to dropping in aqueous zinc salt antisolvent solutions. The release profile in water of the beads prepared using the different solvents was linked to the properties of the counter-ions via the Hofmeister series. Studies in soil showed the potential for longer release times, up to 130 days for zinc sulfate beads. These results, together with the efficient bead production method, demonstrate the potential of zinc-impregnated cellulose acetate beads to replace the plastic-based controlled delivery products used today, contributing to the reduction of carbon emissions and potential environmental impacts due to the uptake of plastic in plants and animals.
Original language | English |
---|---|
Pages (from-to) | 4749-4758 |
Number of pages | 10 |
Journal | ACS Sustainable Chemistry and Engineering |
Volume | 11 |
Issue number | 12 |
Early online date | 14 Mar 2023 |
DOIs | |
Publication status | Published - 27 Mar 2023 |
Bibliographical note
Funding Information:This work was funded by the University of Bath and the EPSRC-funded BIOBEADS project (EP/P027490/1). C.C. acknowledges funding from the EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies (EP/L016354/1) and thanks E. Ekanem and A. Wilson for useful discussions about bead production. All data produced in this manuscript can be found at: https://doi.org/10.15125/BATH-01224 .
Funding
This work was funded by the University of Bath and the EPSRC-funded BIOBEADS project (EP/P027490/1). C.C. acknowledges funding from the EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies (EP/L016354/1) and thanks E. Ekanem and A. Wilson for useful discussions about bead production. All data produced in this manuscript can be found at: https://doi.org/10.15125/BATH-01224 .
Keywords
- biopolymer
- cellulose acetate
- controlled release
- fertilizer
- nutrient
- zinc salt
ASJC Scopus subject areas
- General Chemistry
- Environmental Chemistry
- General Chemical Engineering
- Renewable Energy, Sustainability and the Environment
Fingerprint
Dive into the research topics of 'Cellulose Acetate Microbeads for Controlled Delivery of Essential Micronutrients'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Biodegradable Microbeads and Microspheres
Edler, K. (PI), Mattia, D. (CoI) & Scott, J. L. (CoI)
Engineering and Physical Sciences Research Council
1/09/17 → 30/11/21
Project: Research council
Datasets
-
Dataset for Paper: Cellulose Acetate Microbeads for Controlled Delivery of Essential Micronutrients
Callaghan, C. (Creator), University of Bath, 14 Mar 2023
DOI: 10.15125/BATH-01224
Dataset