Abstract
The geometries and attractive energies of carbonyl-carbonyl interactions have been investigated using crystallographic data and ab initio molecular-orbital calculations. Analysis of crystallographic data for 9049 carbon-substituted >C=O groups shows that 1328 (15%) form contacts with other >C=O groups, in which d(C⋯O) < 3.6 Å. Three common interaction motifs are observed in crystal structures: (a) a slightly sheared antiparallel motif (650 instances) involving a pair of short C⋯O interactions, together with (b) a perpendicular motif (116 instances) and (c) a highly sheared parallel motif (130 instances), which both involve a single short C⋯O interaction. Together, these motifs account for 945 (71%) of the observed interactions. Ab-initio-based molecular-orbital calculations (6-31G** basis sets), using intermolecular perturbation theory (IMPT) applied to a bis-propanone dimer model, yield an attractive interaction energy of -22.3 kJ mol-1 for a perfect rectangular antiparallel dimer having both d(C⋯O) = 3.02 Å and attractive energies < -20 kJ mol-1 over the d(C⋯O) range 2.92-3.32 Å. These energies are comparable to those of medium-strength hydrogen bonds. The IMPT calculations indicate a slight shearing of the antiparallel motif with increasing d(C⋯O). For the perpendicular motif, IMPT yields an attractive interaction energy of -7.6 kJ mol-1, comparable in strength to a C-H⋯O hydrogen bond and with the single d(C⋯O) again at 3.02 Å.
Original language | English |
---|---|
Pages (from-to) | 320-329 |
Number of pages | 10 |
Journal | Acta Crystallographica Section B: Structural Science |
Volume | 54 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Jun 1998 |
ASJC Scopus subject areas
- General Biochemistry,Genetics and Molecular Biology