Abstract

Electrical impedance tomography (EIT) is considered as a potential candidate for brain stroke imaging due to its compactness and potential use in bedside and emergency settings. The electrode-skin contact impedance and low conductivity of skull pose some practical challenges to the EIT head imaging. This paper studies the application of capacitively coupled electrical impedance tomography (CCEIT) in brain imaging for the first time. CCEIT is a new contactless EIT technique which uses voltage excitation without direct contact with the skin, as oppose to directly injecting the current to the skin in EIT. Because the safety issue of a new technique should be strictly treated, simulation work based on a simplified head model was carried out to investigate the safety aspects of CCEIT. By comparing with the standard EIT excited by a typical safe current level used in brain imaging, the safe excitation reference of CCEIT is obtained. This is done by comparing the maximum level of internal electrical field (internal current density) of EIT and that of CCEIT. Simulation results provide useful knowledge of excitation signal level of CCEIT and also show a critical comparison with traditional EIT. Practical experiments were carried out with a 12-electrode CCEIT phantom, saline, and carrot samples. Experimental results show the feasibility and potential of CCEIT for stroke imaging. In this paper, the anomaly diameter resolution is 10 mm (1/18 of the phantom diameter), which indicates that small-volume stroke could be detected. This is achieved by a low excitation voltage of 1 V, showing the possibility of even better performance when higher but yet safe level of excitation voltages is used.

Original languageEnglish
Pages (from-to)2104-2113
Number of pages10
JournalIEEE Transactions on Medical Imaging
Volume38
Issue number9
Early online date25 Jan 2019
DOIs
Publication statusPublished - 1 Sep 2019

ASJC Scopus subject areas

  • Software
  • Radiological and Ultrasound Technology
  • Computer Science Applications
  • Electrical and Electronic Engineering

Cite this

Capacitively Coupled Electrical Impedance Tomography for Brain Imaging. / Jiang, Y; Soleimani, Manuchehr.

In: IEEE Transactions on Medical Imaging, Vol. 38, No. 9, 01.09.2019, p. 2104-2113.

Research output: Contribution to journalArticle

@article{038471bad9af44ba833d632995c44dca,
title = "Capacitively Coupled Electrical Impedance Tomography for Brain Imaging",
abstract = "Electrical impedance tomography (EIT) is considered as a potential candidate for brain stroke imaging due to its compactness and potential use in bedside and emergency settings. The electrode-skin contact impedance and low conductivity of skull pose some practical challenges to the EIT head imaging. This paper studies the application of capacitively coupled electrical impedance tomography (CCEIT) in brain imaging for the first time. CCEIT is a new contactless EIT technique which uses voltage excitation without direct contact with the skin, as oppose to directly injecting the current to the skin in EIT. Because the safety issue of a new technique should be strictly treated, simulation work based on a simplified head model was carried out to investigate the safety aspects of CCEIT. By comparing with the standard EIT excited by a typical safe current level used in brain imaging, the safe excitation reference of CCEIT is obtained. This is done by comparing the maximum level of internal electrical field (internal current density) of EIT and that of CCEIT. Simulation results provide useful knowledge of excitation signal level of CCEIT and also show a critical comparison with traditional EIT. Practical experiments were carried out with a 12-electrode CCEIT phantom, saline, and carrot samples. Experimental results show the feasibility and potential of CCEIT for stroke imaging. In this paper, the anomaly diameter resolution is 10 mm (1/18 of the phantom diameter), which indicates that small-volume stroke could be detected. This is achieved by a low excitation voltage of 1 V, showing the possibility of even better performance when higher but yet safe level of excitation voltages is used.",
author = "Y Jiang and Manuchehr Soleimani",
year = "2019",
month = "9",
day = "1",
doi = "10.1109/TMI.2019.2895035",
language = "English",
volume = "38",
pages = "2104--2113",
journal = "IEEE Transactions on Medical Imaging",
issn = "0278-0062",
publisher = "IEEE",
number = "9",

}

TY - JOUR

T1 - Capacitively Coupled Electrical Impedance Tomography for Brain Imaging

AU - Jiang, Y

AU - Soleimani, Manuchehr

PY - 2019/9/1

Y1 - 2019/9/1

N2 - Electrical impedance tomography (EIT) is considered as a potential candidate for brain stroke imaging due to its compactness and potential use in bedside and emergency settings. The electrode-skin contact impedance and low conductivity of skull pose some practical challenges to the EIT head imaging. This paper studies the application of capacitively coupled electrical impedance tomography (CCEIT) in brain imaging for the first time. CCEIT is a new contactless EIT technique which uses voltage excitation without direct contact with the skin, as oppose to directly injecting the current to the skin in EIT. Because the safety issue of a new technique should be strictly treated, simulation work based on a simplified head model was carried out to investigate the safety aspects of CCEIT. By comparing with the standard EIT excited by a typical safe current level used in brain imaging, the safe excitation reference of CCEIT is obtained. This is done by comparing the maximum level of internal electrical field (internal current density) of EIT and that of CCEIT. Simulation results provide useful knowledge of excitation signal level of CCEIT and also show a critical comparison with traditional EIT. Practical experiments were carried out with a 12-electrode CCEIT phantom, saline, and carrot samples. Experimental results show the feasibility and potential of CCEIT for stroke imaging. In this paper, the anomaly diameter resolution is 10 mm (1/18 of the phantom diameter), which indicates that small-volume stroke could be detected. This is achieved by a low excitation voltage of 1 V, showing the possibility of even better performance when higher but yet safe level of excitation voltages is used.

AB - Electrical impedance tomography (EIT) is considered as a potential candidate for brain stroke imaging due to its compactness and potential use in bedside and emergency settings. The electrode-skin contact impedance and low conductivity of skull pose some practical challenges to the EIT head imaging. This paper studies the application of capacitively coupled electrical impedance tomography (CCEIT) in brain imaging for the first time. CCEIT is a new contactless EIT technique which uses voltage excitation without direct contact with the skin, as oppose to directly injecting the current to the skin in EIT. Because the safety issue of a new technique should be strictly treated, simulation work based on a simplified head model was carried out to investigate the safety aspects of CCEIT. By comparing with the standard EIT excited by a typical safe current level used in brain imaging, the safe excitation reference of CCEIT is obtained. This is done by comparing the maximum level of internal electrical field (internal current density) of EIT and that of CCEIT. Simulation results provide useful knowledge of excitation signal level of CCEIT and also show a critical comparison with traditional EIT. Practical experiments were carried out with a 12-electrode CCEIT phantom, saline, and carrot samples. Experimental results show the feasibility and potential of CCEIT for stroke imaging. In this paper, the anomaly diameter resolution is 10 mm (1/18 of the phantom diameter), which indicates that small-volume stroke could be detected. This is achieved by a low excitation voltage of 1 V, showing the possibility of even better performance when higher but yet safe level of excitation voltages is used.

UR - http://www.scopus.com/inward/record.url?scp=85071746974&partnerID=8YFLogxK

U2 - 10.1109/TMI.2019.2895035

DO - 10.1109/TMI.2019.2895035

M3 - Article

VL - 38

SP - 2104

EP - 2113

JO - IEEE Transactions on Medical Imaging

JF - IEEE Transactions on Medical Imaging

SN - 0278-0062

IS - 9

ER -