TY - JOUR
T1 - Canonical variable analysis and long short-term memory for fault detection, system identification and performance estimation of a centrifugal compressor
AU - Li, Xiaochuan
AU - Duan, Fang
AU - Bennett, Ian
AU - Mba, David
PY - 2018
Y1 - 2018
N2 - Centrifugal compressors are widely used for gas lift, re-injection and transport in the oil and gas industry. Critical compressors that compress flammable gases and operate at high speeds are prioritized on maintenance lists to minimize safety risks and operational downtime hazards. Identifying incipient faults and predicting fault evolution for centrifugal compressors could improve plant safety and efficiency and reduce maintenance and operation costs. This study proposes a dynamic process monitoring method based on canonical variable analysis (CVA) and long short-term memory (LSTM). CVA was used to perform fault detection and identification based on the abnormalities in the canonical state and the residual space. In addition, CVA combined with LSTM was used to estimate the behavior of a system after the occurrence of a fault using data captured from the early stages of deterioration. The approach was evaluated using process data obtained from an operational industrial centrifugal compressor. The results show that the proposed method can effectively detect process abnormalities and perform multi-step-ahead prediction of the system’s behavior after the appearance of a fault.
AB - Centrifugal compressors are widely used for gas lift, re-injection and transport in the oil and gas industry. Critical compressors that compress flammable gases and operate at high speeds are prioritized on maintenance lists to minimize safety risks and operational downtime hazards. Identifying incipient faults and predicting fault evolution for centrifugal compressors could improve plant safety and efficiency and reduce maintenance and operation costs. This study proposes a dynamic process monitoring method based on canonical variable analysis (CVA) and long short-term memory (LSTM). CVA was used to perform fault detection and identification based on the abnormalities in the canonical state and the residual space. In addition, CVA combined with LSTM was used to estimate the behavior of a system after the occurrence of a fault using data captured from the early stages of deterioration. The approach was evaluated using process data obtained from an operational industrial centrifugal compressor. The results show that the proposed method can effectively detect process abnormalities and perform multi-step-ahead prediction of the system’s behavior after the appearance of a fault.
U2 - 10.1016/j.conengprac.2017.12.006
DO - 10.1016/j.conengprac.2017.12.006
M3 - Article
SN - 0967-0661
VL - 72
SP - 177
EP - 191
JO - Control Engineering Practice
JF - Control Engineering Practice
ER -