Buoyant flow and instability in a vertical cylindrical porous slab with permeable boundaries

A. Barletta, M Celli, D A S Rees

Research output: Contribution to journalArticlepeer-review

11 Citations (SciVal)
20 Downloads (Pure)


The basic stationary buoyant flow in a vertical annular porous passage induced by a boundary temperature difference is investigated. The vertical cylindrical boundaries are considered both isothermal and permeable to external fluid reservoirs. There exists a stationary parallel velocity field with a zero flow rate and pure conduction heat transfer. Its linear stability is analysed with normal mode perturbations of the pressure and temperature fields. The transition to convective instability is caused by the basic horizontal temperature gradient. Hence, its nature differs from that of the usual Rayleigh–Benard instability. The linear dynamics of the perturbed flow is formulated as an eigenvalue problem, solved numerically. Its solution provides the neutral stability curve at each fixed aspect ratio between the external radius and the internal radius.The critical Rayleigh number triggering the instability is evaluated for different aspect ratios.It is shown that the system becomes more an more unstable as the aspect ratio increases, with the critical Rayleigh number dropping to zero when the aspect ratio tends to infinity.
Original languageEnglish
Article number119956
Number of pages20
JournalInternational Journal of Heat and Mass Transfer
Early online date22 May 2020
Publication statusPublished - 1 Aug 2020


Dive into the research topics of 'Buoyant flow and instability in a vertical cylindrical porous slab with permeable boundaries'. Together they form a unique fingerprint.

Cite this