Building Robust Real-Time Game AI: Simplifying & Automating Integral Process Steps in Multi-Platform Design

Swen Gaudl

Research output: ThesisDoctoral Thesis

Abstract

Digital games are part of our culture and have gained significant attention over the last decade. The growing capabilities of home computers, gaming consoles and mobile phones allow current games to visualise 3D virtual worlds, photo-realistic characters and the inclusion of complex physical simulations. The growing computational power of those devices enables the usage of complex algorithms while visualising data. Therefore, opportunities arise for developers of interactive products such as digital games which introduce new, challenging and exciting elements to the next generation of highly interactive software systems. Two of those challenges, which current systems do not address adequately, are design support for creating Intelligent Virtual Agents and more believable non-player characters for immersive game-play. We start in this thesis by addressing the agent design support first and then extend the research, addressing the second challenge. The main contributions of this thesis are:

- The POSH-SHARP system is a framework for the development of game agents. The platform is modular, extendable, offers multi-platform support and advanced software development features such as behaviour inspection and behaviour versioning. The framework additionally integrates an advanced information exchange mechanism supporting loose behaviour coupling.
- The Agile behaviour design methodology integrates agile software development and agent design. To guide users, the approach presents a work-flow for agent design and guiding heuristics for their development.
- The action selection augmentation ERGo introduces a "white-box" solution to altering existing agent frameworks, making their agents less deterministic. It augments selected behaviours with a bio-mimetic memory to track and adjust their activation over time.

With the new approach to agent design, the development of "deepagent" behaviour for digital adversaries and advanced tools supporting their design is given. Such mechanisms should enable developers to build robust non-player characters that act more human-like in an efficient and robust manner.

Within this thesis, different strategies are identified to support the design of agents in a more robust manner and to guide developers. These discussed mechanisms are then evolved to develop and design Intelligent Virtual Agents. Because humans are still the best measurement for human-likeness, the evolutionary cycle involves feedback given by human players.
LanguageEnglish
QualificationPh.D.
Awarding Institution
  • University of Bath
Supervisors/Advisors
  • Bryson, Joanna, Supervisor
Award date3 Aug 2016
StatusPublished - May 2016

Fingerprint

Intelligent virtual agents
Software engineering
Software agents
Mobile phones
Inspection
Chemical activation
Feedback
Data storage equipment

Keywords

  • games
  • digital games
  • agent design
  • Agent programming language
  • Genetic programming
  • Software development
  • Artificial Intelligence

Cite this

@phdthesis{6a02777af34a4aa4bccd5d7cfc466431,
title = "Building Robust Real-Time Game AI: Simplifying & Automating Integral Process Steps in Multi-Platform Design",
abstract = "Digital games are part of our culture and have gained significant attention over the last decade. The growing capabilities of home computers, gaming consoles and mobile phones allow current games to visualise 3D virtual worlds, photo-realistic characters and the inclusion of complex physical simulations. The growing computational power of those devices enables the usage of complex algorithms while visualising data. Therefore, opportunities arise for developers of interactive products such as digital games which introduce new, challenging and exciting elements to the next generation of highly interactive software systems. Two of those challenges, which current systems do not address adequately, are design support for creating Intelligent Virtual Agents and more believable non-player characters for immersive game-play. We start in this thesis by addressing the agent design support first and then extend the research, addressing the second challenge. The main contributions of this thesis are: - The POSH-SHARP system is a framework for the development of game agents. The platform is modular, extendable, offers multi-platform support and advanced software development features such as behaviour inspection and behaviour versioning. The framework additionally integrates an advanced information exchange mechanism supporting loose behaviour coupling. - The Agile behaviour design methodology integrates agile software development and agent design. To guide users, the approach presents a work-flow for agent design and guiding heuristics for their development. - The action selection augmentation ERGo introduces a {"}white-box{"} solution to altering existing agent frameworks, making their agents less deterministic. It augments selected behaviours with a bio-mimetic memory to track and adjust their activation over time.With the new approach to agent design, the development of {"}deepagent{"} behaviour for digital adversaries and advanced tools supporting their design is given. Such mechanisms should enable developers to build robust non-player characters that act more human-like in an efficient and robust manner. Within this thesis, different strategies are identified to support the design of agents in a more robust manner and to guide developers. These discussed mechanisms are then evolved to develop and design Intelligent Virtual Agents. Because humans are still the best measurement for human-likeness, the evolutionary cycle involves feedback given by human players.",
keywords = "games, digital games, agent design, Agent programming language, Genetic programming, Software development, Artificial Intelligence",
author = "Swen Gaudl",
year = "2016",
month = "5",
language = "English",
school = "University of Bath",

}

TY - THES

T1 - Building Robust Real-Time Game AI

T2 - Simplifying & Automating Integral Process Steps in Multi-Platform Design

AU - Gaudl, Swen

PY - 2016/5

Y1 - 2016/5

N2 - Digital games are part of our culture and have gained significant attention over the last decade. The growing capabilities of home computers, gaming consoles and mobile phones allow current games to visualise 3D virtual worlds, photo-realistic characters and the inclusion of complex physical simulations. The growing computational power of those devices enables the usage of complex algorithms while visualising data. Therefore, opportunities arise for developers of interactive products such as digital games which introduce new, challenging and exciting elements to the next generation of highly interactive software systems. Two of those challenges, which current systems do not address adequately, are design support for creating Intelligent Virtual Agents and more believable non-player characters for immersive game-play. We start in this thesis by addressing the agent design support first and then extend the research, addressing the second challenge. The main contributions of this thesis are: - The POSH-SHARP system is a framework for the development of game agents. The platform is modular, extendable, offers multi-platform support and advanced software development features such as behaviour inspection and behaviour versioning. The framework additionally integrates an advanced information exchange mechanism supporting loose behaviour coupling. - The Agile behaviour design methodology integrates agile software development and agent design. To guide users, the approach presents a work-flow for agent design and guiding heuristics for their development. - The action selection augmentation ERGo introduces a "white-box" solution to altering existing agent frameworks, making their agents less deterministic. It augments selected behaviours with a bio-mimetic memory to track and adjust their activation over time.With the new approach to agent design, the development of "deepagent" behaviour for digital adversaries and advanced tools supporting their design is given. Such mechanisms should enable developers to build robust non-player characters that act more human-like in an efficient and robust manner. Within this thesis, different strategies are identified to support the design of agents in a more robust manner and to guide developers. These discussed mechanisms are then evolved to develop and design Intelligent Virtual Agents. Because humans are still the best measurement for human-likeness, the evolutionary cycle involves feedback given by human players.

AB - Digital games are part of our culture and have gained significant attention over the last decade. The growing capabilities of home computers, gaming consoles and mobile phones allow current games to visualise 3D virtual worlds, photo-realistic characters and the inclusion of complex physical simulations. The growing computational power of those devices enables the usage of complex algorithms while visualising data. Therefore, opportunities arise for developers of interactive products such as digital games which introduce new, challenging and exciting elements to the next generation of highly interactive software systems. Two of those challenges, which current systems do not address adequately, are design support for creating Intelligent Virtual Agents and more believable non-player characters for immersive game-play. We start in this thesis by addressing the agent design support first and then extend the research, addressing the second challenge. The main contributions of this thesis are: - The POSH-SHARP system is a framework for the development of game agents. The platform is modular, extendable, offers multi-platform support and advanced software development features such as behaviour inspection and behaviour versioning. The framework additionally integrates an advanced information exchange mechanism supporting loose behaviour coupling. - The Agile behaviour design methodology integrates agile software development and agent design. To guide users, the approach presents a work-flow for agent design and guiding heuristics for their development. - The action selection augmentation ERGo introduces a "white-box" solution to altering existing agent frameworks, making their agents less deterministic. It augments selected behaviours with a bio-mimetic memory to track and adjust their activation over time.With the new approach to agent design, the development of "deepagent" behaviour for digital adversaries and advanced tools supporting their design is given. Such mechanisms should enable developers to build robust non-player characters that act more human-like in an efficient and robust manner. Within this thesis, different strategies are identified to support the design of agents in a more robust manner and to guide developers. These discussed mechanisms are then evolved to develop and design Intelligent Virtual Agents. Because humans are still the best measurement for human-likeness, the evolutionary cycle involves feedback given by human players.

KW - games

KW - digital games

KW - agent design

KW - Agent programming language

KW - Genetic programming

KW - Software development

KW - Artificial Intelligence

M3 - Doctoral Thesis

ER -