Broadband, electrically tunable third-harmonic generation in graphene

Giancarlo Soavi, Gang Wang, Habib Rostami, David G. Purdie, Domenico De Fazio, Teng Ma, Birong Luo, Junjia Wang, Anna K. Ott, Duhee Yoon, Sean A. Bourelle, Jakob E. Muench, Ilya Goykhman, Stefano Dal Conte, Michele Celebrano, Andrea Tomadin, Marco Polini, Giulio Cerullo, Andrea C. Ferrari

Research output: Contribution to journalArticlepeer-review

226 Citations (SciVal)

Abstract

Optical harmonic generation occurs when high intensity light (>1010 W m- 2) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light-matter interaction and electrically and broadband tunable third-order nonlinear susceptibility. Here, we show that the third-harmonic generation efficiency in graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy. This enhancement is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from resonant multiphoton transitions. Thanks to the linear dispersion of the massless Dirac fermions, gate controllable third-harmonic enhancement can be achieved over an ultrabroad bandwidth, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing.

Original languageEnglish
Pages (from-to)583-588
Number of pages6
JournalNature Nanotechnology
Volume13
Issue number7
Early online date21 May 2018
DOIs
Publication statusPublished - 1 Jul 2018

Funding

We acknowledge funding from EU Graphene Flagship, ERC Grant Hetero2D, and EPSRC grants EP/K01711X/1, EP/K017144/1, EP/N010345/1 and EP/L016087/1.

FundersFunder number
Horizon 2020 Framework Programme785219
Engineering and Physical Sciences Research CouncilEP/L016087/1, EP/K017144/1, EP/N010345/1, EP/K01711X/1
European Commission
European Research Council

ASJC Scopus subject areas

  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering
  • General Materials Science
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Broadband, electrically tunable third-harmonic generation in graphene'. Together they form a unique fingerprint.

Cite this