Abstract

The two-phase flow generated by breaking ocean waves plays a crucial role in various geophysical processes, including dissipation of wave energy and atmospheric gas exchange. This paper presents a technique to measure the two-phase flow generated by breaking waves at prototype scale. We have demonstrated the validity and potential of this technique in the Large Wave Flume (Grosser Wellenkanal, GWK) facility in Hanover, Germany. Actively breaking, depth-limited waves were measured using an array of three downward-looking lidars mounted above the water surface and an upward-looking multibeam sonar below. This novel setup enabled the characterization of the complete upper boundary (free water surface and splash-up) and seaward lower boundary (entrained cavity and bubble plume) of the breaking wave. We have quantified the migration of the lower boundary as the cavity and plume are entrained in the water column—penetrating toward the seabed, moving onshore with the passage of the wave crest, and then rising as it is slowly advected offshore. We have also estimated the overall composition of the splash, cavity, and plume as the breaking wave evolves over time. Our observations are consistent with results from previous small-scale laboratory experiments and the suitability of the technique for experimentation at prototype scale has been demonstrated.
Original languageEnglish
Pages (from-to)1-11
Number of pages11
JournalIEEE Journal of Oceanic Engineering
Early online date12 Mar 2019
DOIs
Publication statusE-pub ahead of print - 12 Mar 2019

Cite this

Breaking wave imaging using lidar and sonar. / Bryan, Oscar; Bayle, Paul; Blenkinsopp, Christopher; Hunter, Alan J.

In: IEEE Journal of Oceanic Engineering, 12.03.2019, p. 1-11.

Research output: Contribution to journalArticle

@article{63c2e2bb27db48eeba243f3d1701925c,
title = "Breaking wave imaging using lidar and sonar",
abstract = "The two-phase flow generated by breaking ocean waves plays a crucial role in various geophysical processes, including dissipation of wave energy and atmospheric gas exchange. This paper presents a technique to measure the two-phase flow generated by breaking waves at prototype scale. We have demonstrated the validity and potential of this technique in the Large Wave Flume (Grosser Wellenkanal, GWK) facility in Hanover, Germany. Actively breaking, depth-limited waves were measured using an array of three downward-looking lidars mounted above the water surface and an upward-looking multibeam sonar below. This novel setup enabled the characterization of the complete upper boundary (free water surface and splash-up) and seaward lower boundary (entrained cavity and bubble plume) of the breaking wave. We have quantified the migration of the lower boundary as the cavity and plume are entrained in the water column—penetrating toward the seabed, moving onshore with the passage of the wave crest, and then rising as it is slowly advected offshore. We have also estimated the overall composition of the splash, cavity, and plume as the breaking wave evolves over time. Our observations are consistent with results from previous small-scale laboratory experiments and the suitability of the technique for experimentation at prototype scale has been demonstrated.",
author = "Oscar Bryan and Paul Bayle and Christopher Blenkinsopp and Hunter, {Alan J.}",
year = "2019",
month = "3",
day = "12",
doi = "10.1109/JOE.2019.2900967",
language = "English",
pages = "1--11",
journal = "IEEE Journal of Oceanic Engineering",
issn = "0364-9059",
publisher = "IEEE",

}

TY - JOUR

T1 - Breaking wave imaging using lidar and sonar

AU - Bryan, Oscar

AU - Bayle, Paul

AU - Blenkinsopp, Christopher

AU - Hunter, Alan J.

PY - 2019/3/12

Y1 - 2019/3/12

N2 - The two-phase flow generated by breaking ocean waves plays a crucial role in various geophysical processes, including dissipation of wave energy and atmospheric gas exchange. This paper presents a technique to measure the two-phase flow generated by breaking waves at prototype scale. We have demonstrated the validity and potential of this technique in the Large Wave Flume (Grosser Wellenkanal, GWK) facility in Hanover, Germany. Actively breaking, depth-limited waves were measured using an array of three downward-looking lidars mounted above the water surface and an upward-looking multibeam sonar below. This novel setup enabled the characterization of the complete upper boundary (free water surface and splash-up) and seaward lower boundary (entrained cavity and bubble plume) of the breaking wave. We have quantified the migration of the lower boundary as the cavity and plume are entrained in the water column—penetrating toward the seabed, moving onshore with the passage of the wave crest, and then rising as it is slowly advected offshore. We have also estimated the overall composition of the splash, cavity, and plume as the breaking wave evolves over time. Our observations are consistent with results from previous small-scale laboratory experiments and the suitability of the technique for experimentation at prototype scale has been demonstrated.

AB - The two-phase flow generated by breaking ocean waves plays a crucial role in various geophysical processes, including dissipation of wave energy and atmospheric gas exchange. This paper presents a technique to measure the two-phase flow generated by breaking waves at prototype scale. We have demonstrated the validity and potential of this technique in the Large Wave Flume (Grosser Wellenkanal, GWK) facility in Hanover, Germany. Actively breaking, depth-limited waves were measured using an array of three downward-looking lidars mounted above the water surface and an upward-looking multibeam sonar below. This novel setup enabled the characterization of the complete upper boundary (free water surface and splash-up) and seaward lower boundary (entrained cavity and bubble plume) of the breaking wave. We have quantified the migration of the lower boundary as the cavity and plume are entrained in the water column—penetrating toward the seabed, moving onshore with the passage of the wave crest, and then rising as it is slowly advected offshore. We have also estimated the overall composition of the splash, cavity, and plume as the breaking wave evolves over time. Our observations are consistent with results from previous small-scale laboratory experiments and the suitability of the technique for experimentation at prototype scale has been demonstrated.

U2 - 10.1109/JOE.2019.2900967

DO - 10.1109/JOE.2019.2900967

M3 - Article

SP - 1

EP - 11

JO - IEEE Journal of Oceanic Engineering

JF - IEEE Journal of Oceanic Engineering

SN - 0364-9059

ER -