4 Citations (Scopus)
73 Downloads (Pure)

Abstract

In this investigation a range of ketone biofuels produced from the alkylation of isoamyl alcohol and isobutanol were examined as potential blending agents with Jet A-1 aviation kerosene. The fuels were synthesized under solvent-free conditions using a Pd/C catalyst with K3PO4, previously reported for the alkylation of acetone, butanol, and ethanol (ABE) fermentation mixtures. Reasonable yields and selectivity were achieved for branched alkylation products with up to 61% produced from isoamyl alcohol and 64% from isobutanol. The key aviation fuel properties of the mixtures were tested unblended and in 50% and 20% blends with Jet A-1 aviation kerosene. The freezing points of the fuels were all found to be below the required −47 °C irrespective of blend or the temperature of the reaction. The energy density of the unblended fuels ranged between 30.4 and 41.36 MJ/kg depending on the temperature of the reaction and whether remaining alcohols were removed. While this is below the higher heating value (HHV) of the Jet A-1 used (45.69 MJ/kg), the energy densities of the 50% and 20% blends were more suitable with the isoamyl alcohol derived fuels having a maximum HHV of 44.31 MJ/kg at 50% blending and 44.99 MJ/kg at 20% blend with Jet A-1. The fuels derived from isoamyl alcohol produced above 140 °C were found to satisfy the flash point criterion (>38 °C) of the Jet A-1 specification, though the isobutanol derived fuels did not, producing fuels with flash points between 33 and 35 °C. The kinematic viscosities of the fuels were also tested at −20 °C. Unblended only a few of the fuels analyzed met the maximum viscosity requirement at −20 °C of 8 mm2 s–1, though this fuel property was improved substantially on blending with jet fuel. This work demonstrates that ketones produced from isoamyl alcohol through a simple alkylation have the potential to be used as blending agents with Jet A-1.
Original languageEnglish
Pages (from-to)294-301
JournalEnergy & Fuels
Volume30
Issue number1
Early online date14 Dec 2015
DOIs
Publication statusPublished - 21 Jan 2016

Fingerprint

Biofuels
Kerosene
Ketones
Aviation
Alcohols
Alkylation
Viscosity
Heating
Butanols
Jet fuel
Acetone
Butenes
Freezing
Fermentation
Ethanol
isopentyl alcohol
Specifications

Cite this

Branched ketone biofuels as blending agents for Jet-A1 aviation kerosene. / Donnelly, Joseph; Horton, Richard; Gopalan, Kesavan; Bannister, Christopher D.; Chuck, Christopher J.

In: Energy & Fuels, Vol. 30, No. 1, 21.01.2016, p. 294-301.

Research output: Contribution to journalArticle

Donnelly, Joseph ; Horton, Richard ; Gopalan, Kesavan ; Bannister, Christopher D. ; Chuck, Christopher J. / Branched ketone biofuels as blending agents for Jet-A1 aviation kerosene. In: Energy & Fuels. 2016 ; Vol. 30, No. 1. pp. 294-301.
@article{bb6e14992b9c4f25bbf96075ae4e7a41,
title = "Branched ketone biofuels as blending agents for Jet-A1 aviation kerosene",
abstract = "In this investigation a range of ketone biofuels produced from the alkylation of isoamyl alcohol and isobutanol were examined as potential blending agents with Jet A-1 aviation kerosene. The fuels were synthesized under solvent-free conditions using a Pd/C catalyst with K3PO4, previously reported for the alkylation of acetone, butanol, and ethanol (ABE) fermentation mixtures. Reasonable yields and selectivity were achieved for branched alkylation products with up to 61{\%} produced from isoamyl alcohol and 64{\%} from isobutanol. The key aviation fuel properties of the mixtures were tested unblended and in 50{\%} and 20{\%} blends with Jet A-1 aviation kerosene. The freezing points of the fuels were all found to be below the required −47 °C irrespective of blend or the temperature of the reaction. The energy density of the unblended fuels ranged between 30.4 and 41.36 MJ/kg depending on the temperature of the reaction and whether remaining alcohols were removed. While this is below the higher heating value (HHV) of the Jet A-1 used (45.69 MJ/kg), the energy densities of the 50{\%} and 20{\%} blends were more suitable with the isoamyl alcohol derived fuels having a maximum HHV of 44.31 MJ/kg at 50{\%} blending and 44.99 MJ/kg at 20{\%} blend with Jet A-1. The fuels derived from isoamyl alcohol produced above 140 °C were found to satisfy the flash point criterion (>38 °C) of the Jet A-1 specification, though the isobutanol derived fuels did not, producing fuels with flash points between 33 and 35 °C. The kinematic viscosities of the fuels were also tested at −20 °C. Unblended only a few of the fuels analyzed met the maximum viscosity requirement at −20 °C of 8 mm2 s–1, though this fuel property was improved substantially on blending with jet fuel. This work demonstrates that ketones produced from isoamyl alcohol through a simple alkylation have the potential to be used as blending agents with Jet A-1.",
author = "Joseph Donnelly and Richard Horton and Kesavan Gopalan and Bannister, {Christopher D.} and Chuck, {Christopher J.}",
year = "2016",
month = "1",
day = "21",
doi = "10.1021/acs.energyfuels.5b01629",
language = "English",
volume = "30",
pages = "294--301",
journal = "Energy & Fuels",
issn = "0887-0624",
publisher = "American Chemical Society",
number = "1",

}

TY - JOUR

T1 - Branched ketone biofuels as blending agents for Jet-A1 aviation kerosene

AU - Donnelly, Joseph

AU - Horton, Richard

AU - Gopalan, Kesavan

AU - Bannister, Christopher D.

AU - Chuck, Christopher J.

PY - 2016/1/21

Y1 - 2016/1/21

N2 - In this investigation a range of ketone biofuels produced from the alkylation of isoamyl alcohol and isobutanol were examined as potential blending agents with Jet A-1 aviation kerosene. The fuels were synthesized under solvent-free conditions using a Pd/C catalyst with K3PO4, previously reported for the alkylation of acetone, butanol, and ethanol (ABE) fermentation mixtures. Reasonable yields and selectivity were achieved for branched alkylation products with up to 61% produced from isoamyl alcohol and 64% from isobutanol. The key aviation fuel properties of the mixtures were tested unblended and in 50% and 20% blends with Jet A-1 aviation kerosene. The freezing points of the fuels were all found to be below the required −47 °C irrespective of blend or the temperature of the reaction. The energy density of the unblended fuels ranged between 30.4 and 41.36 MJ/kg depending on the temperature of the reaction and whether remaining alcohols were removed. While this is below the higher heating value (HHV) of the Jet A-1 used (45.69 MJ/kg), the energy densities of the 50% and 20% blends were more suitable with the isoamyl alcohol derived fuels having a maximum HHV of 44.31 MJ/kg at 50% blending and 44.99 MJ/kg at 20% blend with Jet A-1. The fuels derived from isoamyl alcohol produced above 140 °C were found to satisfy the flash point criterion (>38 °C) of the Jet A-1 specification, though the isobutanol derived fuels did not, producing fuels with flash points between 33 and 35 °C. The kinematic viscosities of the fuels were also tested at −20 °C. Unblended only a few of the fuels analyzed met the maximum viscosity requirement at −20 °C of 8 mm2 s–1, though this fuel property was improved substantially on blending with jet fuel. This work demonstrates that ketones produced from isoamyl alcohol through a simple alkylation have the potential to be used as blending agents with Jet A-1.

AB - In this investigation a range of ketone biofuels produced from the alkylation of isoamyl alcohol and isobutanol were examined as potential blending agents with Jet A-1 aviation kerosene. The fuels were synthesized under solvent-free conditions using a Pd/C catalyst with K3PO4, previously reported for the alkylation of acetone, butanol, and ethanol (ABE) fermentation mixtures. Reasonable yields and selectivity were achieved for branched alkylation products with up to 61% produced from isoamyl alcohol and 64% from isobutanol. The key aviation fuel properties of the mixtures were tested unblended and in 50% and 20% blends with Jet A-1 aviation kerosene. The freezing points of the fuels were all found to be below the required −47 °C irrespective of blend or the temperature of the reaction. The energy density of the unblended fuels ranged between 30.4 and 41.36 MJ/kg depending on the temperature of the reaction and whether remaining alcohols were removed. While this is below the higher heating value (HHV) of the Jet A-1 used (45.69 MJ/kg), the energy densities of the 50% and 20% blends were more suitable with the isoamyl alcohol derived fuels having a maximum HHV of 44.31 MJ/kg at 50% blending and 44.99 MJ/kg at 20% blend with Jet A-1. The fuels derived from isoamyl alcohol produced above 140 °C were found to satisfy the flash point criterion (>38 °C) of the Jet A-1 specification, though the isobutanol derived fuels did not, producing fuels with flash points between 33 and 35 °C. The kinematic viscosities of the fuels were also tested at −20 °C. Unblended only a few of the fuels analyzed met the maximum viscosity requirement at −20 °C of 8 mm2 s–1, though this fuel property was improved substantially on blending with jet fuel. This work demonstrates that ketones produced from isoamyl alcohol through a simple alkylation have the potential to be used as blending agents with Jet A-1.

UR - http://dx.doi.org/10.1021/acs.energyfuels.5b01629

U2 - 10.1021/acs.energyfuels.5b01629

DO - 10.1021/acs.energyfuels.5b01629

M3 - Article

VL - 30

SP - 294

EP - 301

JO - Energy & Fuels

JF - Energy & Fuels

SN - 0887-0624

IS - 1

ER -