Abstract
In this work, we synthesized a series of boronate ester fluorescence probes (E)-4,4,5,5-tetramethyl-2-(4-styrylphenyl)-1,3,2-dioxaborolane (STBPin), (E)-N,N-dimethyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)aniline (DSTBPin), (E)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)benzonitrile (CSTBPin), (E)-2-(4-(4-methoxystyryl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (MSTBPin), (E)-N,N-dimethyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)naphthalen-1-amine (NDSTBPin), and N,N-dimethyl-4-(2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)oxazol-5-yl)aniline (DAPOX-BPin) for the detection of hydrogen peroxide (H 2O 2). DSTBPin and MSTBPin displayed an “Off–On” fluorescence response towards H 2O 2, owing to the loss of the intramolecular charge transfer (ICT) excited state. Whereas, CSTBPin displayed a decrease in fluorescence intensity in the presence of H 2O 2 owing to the introduction of an ICT excited state. STBPin, on the other hand, produced a small fluorescence decrease, indicating the importance of an electron-withdrawing or electron-donating group in these systems. Unfortunately, the longer wavelength probe, NDSTBPin, displayed a decrease in fluorescence intensity. Oxazole-based probe DAPOX-BPin produced a “turn-on” response. Regrettably, DAPOX-BPin required large concentrations of H 2O 2 (>3 mm) to produce noticeable changes in fluorescence intensity and, therefore, no change in fluorescence was observed in the cell imaging experiments.
Original language | English |
---|---|
Pages (from-to) | 262-265 |
Number of pages | 4 |
Journal | ChemistryOpen |
Volume | 7 |
Issue number | 3 |
Early online date | 26 Jan 2018 |
DOIs | |
Publication status | Published - 1 Mar 2018 |
Keywords
- H O
- boronic acids
- diagnostics
- fluorescent probes
- intramolecular charge transfer (ICT)
ASJC Scopus subject areas
- General Chemistry
Fingerprint
Dive into the research topics of 'Boronate-Based Fluorescence Probes for the Detection of Hydrogen Peroxide'. Together they form a unique fingerprint.Equipment
-
Avance 300 MHz Nuclear Magnetic Resonance (NMR) Spectrometer (1South)
Material and Chemical Characterisation (MC2)Facility/equipment: Equipment
-
Electrospray Time-of-Flight Mass Spectrometer (Open-Access)
Material and Chemical Characterisation (MC2)Facility/equipment: Equipment