Bone vibration measurement using ultrasound; application to detection of hip prosthesis loosening

A Rowlands, F Duck, J L Cunningham

Research output: Contribution to journalArticlepeer-review

41 Citations (SciVal)

Abstract

Hip prosthesis loosening can be determined in vivo using a vibration-based technique called vibrometry. In this technique, a low frequency (<1000Hz) sinusoidal vibration is applied to the femoral condyles and the resulting vibration is measured at the greater trochanter. If the prosthesis is securely fixed, the output vibration signal matches that of the input vibration, whereas if the prosthesis is loose, the output vibration signal is distorted and shows the marked presence of harmonics of the input frequency. One of the main problems with this application of this technique is in measuring the output vibration where significant amounts of soft tissue cover the measurement site. In order to circumvent this problem, an ultrasound probe, normally used for the measurement of blood flow, has been used to measure the output vibration. This has been evaluated by comparing the results obtained from the ultrasound probe with those from a conventional accelerometer in models representing a tight and loose hip prosthesis under simulated clinical conditions. The ultrasound probe was able to consistently detect the output vibration, for both the loose and secure prostheses. Under the test conditions used (which attempted to simulate a large thickness of soft tissue), the ultrasound probe was able to produce a greatly enhanced output vibration signal compared to the accelerometer. This suggests that the use of an ultrasound probe to detect mechanically induced vibration through significant amounts of soft tissue appears to be viable and could lead to enhanced detection of prosthesis loosening using this technique.
Original languageEnglish
Pages (from-to)278-284
Number of pages7
JournalMedical Engineering & Physics
Volume30
Issue number3
DOIs
Publication statusPublished - 2008

Fingerprint

Dive into the research topics of 'Bone vibration measurement using ultrasound; application to detection of hip prosthesis loosening'. Together they form a unique fingerprint.

Cite this