Bone remodelling around the tibia due to total ankle replacement: effects of implant material and implant–bone interfacial conditions

Subrata Mondal, Rajesh Ghosh

Research output: Contribution to journalArticlepeer-review

20 Citations (SciVal)

Abstract

One of the major causes of implant loosening is due to excessive bone resorption surrounding the implant due to bone remodelling. The objective of the study is to investigate the effects of implant material and implant–bone interface conditions on bone remodelling around tibia bone due to total ankle replacement. Finite element models of intact and implanted ankles were developed using CT scan data sets. Bone remodelling algorithm was used in combination with FE analysis to predict the bone density changes around the ankle joint. Dorsiflexion, neutral, and plantar flexion positions were considered, along with muscle force and ligaments. Implant–bone interfacial conditions were assumed as debonded and bonded to represent non-osseointegration and fully osseointegration at the porous coated surface of the implant. To investigate the effect of implant material, three finite element models having different material combinations of the implant were developed. For model 1, tibial and talar components were made of Co–Cr–Mo, and meniscal bearing was made of UHMWPE. For model 2, tibial and talar components were made of ceramic and meniscal bearing was made of UHMWPE. For model 3, tibial and talar components were made of ceramic and meniscal bearing was made of CFR-PEEK. Changes in implant material showed no significant changes in bone density due to bone remodelling. Therefore, ceramic appears to be a viable alternative to metal and CFR-PEEK can be used in place of UHMWPE. This study also indicates that proper bonding between implant and bone is essential for long-term survival of the prosthetic components.
Original languageEnglish
Pages (from-to)1247-1257
JournalComputer Methods in Biomechanics and Biomedical Engineering
Volume22
Issue number16
Early online date9 Sept 2019
DOIs
Publication statusPublished - 31 Dec 2019

Fingerprint

Dive into the research topics of 'Bone remodelling around the tibia due to total ankle replacement: effects of implant material and implant–bone interfacial conditions'. Together they form a unique fingerprint.

Cite this