Abstract

A hydrophobic polymer of intrinsic microporosity (PIM-EA-TB) is employed to stabilize an organogel/aqueous electrolyte phase boundary based on an organic water-insoluble 4-(3-phenylpropyl)-pyridine phase. The organogel with electrocatalytic metal complexes embedded is immobilized on glassy carbon or on transparent mesoporous tin-doped indium oxide (ITO) electrodes. Liquid/liquid ion transfer voltammetry is investigated for a 4-(3-phenylpropyl)-pyridine organogel/aqueous electrolyte interface for two types of redox systems: tetraphenylporphyrinato-Mn(III/II) (MnTPP) and phthalocyanato-Mn(III/II) (MnPc). Electron transfer is shown to be coupled to reversible liquid/liquid anion transfer processes for PF6−, ClO 4 −, SCN −, and NO 3 −, with a change in mechanism for the more hydrophilic anions Cl−,F −, and SO42−. In situ UV-Vis spectroelectrochemistry reveals reversible Mn(III/II) redox processes coupled to ion transfer for MnTPP. But further complexity and a detrimental side reaction are observed for MnPc causing gradual loss of the electrochemical response in the presence of dioxygen.
LanguageEnglish
JournalElectrocatalysis
StatusAccepted/In press - 11 Nov 2018

Cite this

@article{d999414a6f6b4aa29bc45d9d3859b5b6,
title = "Biphasic Voltammetry and Spectroelectrochemistry in Polymer of Intrinsic Microporosity—4-(3-Phenylpropyl)-Pyridine Organogel/Aqueous Electrolyte Systems: Reactivity of MnPc Versus MnTPP",
abstract = "A hydrophobic polymer of intrinsic microporosity (PIM-EA-TB) is employed to stabilize an organogel/aqueous electrolyte phase boundary based on an organic water-insoluble 4-(3-phenylpropyl)-pyridine phase. The organogel with electrocatalytic metal complexes embedded is immobilized on glassy carbon or on transparent mesoporous tin-doped indium oxide (ITO) electrodes. Liquid/liquid ion transfer voltammetry is investigated for a 4-(3-phenylpropyl)-pyridine organogel/aqueous electrolyte interface for two types of redox systems: tetraphenylporphyrinato-Mn(III/II) (MnTPP) and phthalocyanato-Mn(III/II) (MnPc). Electron transfer is shown to be coupled to reversible liquid/liquid anion transfer processes for PF6−, ClO 4 −, SCN −, and NO 3 −, with a change in mechanism for the more hydrophilic anions Cl−,F −, and SO42−. In situ UV-Vis spectroelectrochemistry reveals reversible Mn(III/II) redox processes coupled to ion transfer for MnTPP. But further complexity and a detrimental side reaction are observed for MnPc causing gradual loss of the electrochemical response in the presence of dioxygen.",
author = "Frank Marken and Elena Madrid",
year = "2018",
month = "11",
day = "11",
language = "English",
journal = "Electrocatalysis",
issn = "1868-2529",
publisher = "Springer Publishing Company",

}

TY - JOUR

T1 - Biphasic Voltammetry and Spectroelectrochemistry in Polymer of Intrinsic Microporosity—4-(3-Phenylpropyl)-Pyridine Organogel/Aqueous Electrolyte Systems: Reactivity of MnPc Versus MnTPP

AU - Marken, Frank

AU - Madrid, Elena

PY - 2018/11/11

Y1 - 2018/11/11

N2 - A hydrophobic polymer of intrinsic microporosity (PIM-EA-TB) is employed to stabilize an organogel/aqueous electrolyte phase boundary based on an organic water-insoluble 4-(3-phenylpropyl)-pyridine phase. The organogel with electrocatalytic metal complexes embedded is immobilized on glassy carbon or on transparent mesoporous tin-doped indium oxide (ITO) electrodes. Liquid/liquid ion transfer voltammetry is investigated for a 4-(3-phenylpropyl)-pyridine organogel/aqueous electrolyte interface for two types of redox systems: tetraphenylporphyrinato-Mn(III/II) (MnTPP) and phthalocyanato-Mn(III/II) (MnPc). Electron transfer is shown to be coupled to reversible liquid/liquid anion transfer processes for PF6−, ClO 4 −, SCN −, and NO 3 −, with a change in mechanism for the more hydrophilic anions Cl−,F −, and SO42−. In situ UV-Vis spectroelectrochemistry reveals reversible Mn(III/II) redox processes coupled to ion transfer for MnTPP. But further complexity and a detrimental side reaction are observed for MnPc causing gradual loss of the electrochemical response in the presence of dioxygen.

AB - A hydrophobic polymer of intrinsic microporosity (PIM-EA-TB) is employed to stabilize an organogel/aqueous electrolyte phase boundary based on an organic water-insoluble 4-(3-phenylpropyl)-pyridine phase. The organogel with electrocatalytic metal complexes embedded is immobilized on glassy carbon or on transparent mesoporous tin-doped indium oxide (ITO) electrodes. Liquid/liquid ion transfer voltammetry is investigated for a 4-(3-phenylpropyl)-pyridine organogel/aqueous electrolyte interface for two types of redox systems: tetraphenylporphyrinato-Mn(III/II) (MnTPP) and phthalocyanato-Mn(III/II) (MnPc). Electron transfer is shown to be coupled to reversible liquid/liquid anion transfer processes for PF6−, ClO 4 −, SCN −, and NO 3 −, with a change in mechanism for the more hydrophilic anions Cl−,F −, and SO42−. In situ UV-Vis spectroelectrochemistry reveals reversible Mn(III/II) redox processes coupled to ion transfer for MnTPP. But further complexity and a detrimental side reaction are observed for MnPc causing gradual loss of the electrochemical response in the presence of dioxygen.

M3 - Article

JO - Electrocatalysis

T2 - Electrocatalysis

JF - Electrocatalysis

SN - 1868-2529

ER -