Biosynthesis of scopoletin and scopolin in cassava roots during post-harvest physiological deterioration: The E-Z-isomerisation stage

S A L Bayoumi, Michael G Rowan, I S Blagbrough, J R Beeching

Research output: Contribution to journalArticle

29 Citations (Scopus)
79 Downloads (Pure)

Abstract

Two to three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer from post-harvest physiological deterioration (PPD) when secondary metabolites are accumulated. Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside scopolin) which play roles in plant defence and have pharmacological activities. Some steps in the biosynthesis of these molecules are still unknown in cassava and in other plants. We exploit the accumulation of these coumarins during PPD to investigate the E-Z-isomerisation step in their biosynthesis. Feeding cubed cassava roots with E-cinnamic- 3,20,30,40,50,60-d5 acid gave scopoletin-d2. However, feeding with E-cinnamic-3,20,30,40,50,60-d6 and E-cinnamic-2,3,20,30,40,50,60-d7 acids, both gave scopoletin-d3, the latter not affording the expected scopoletin- d4. We therefore synthesised and fed with E-cinnamic-2-d1 when unlabelled scopoletin was biosynthesised. Solely the hydrogen (or deuterium) at C2 of cinnamic acid is exchanged in the biosynthesis of hydroxycoumarins. If the mechanism of E-Z-cinnamic acid isomerisation were photochemical, we would not expect to see the loss of deuterium which we observed. Therefore, a possible mechanism is an enzyme catalysed 1,4-Michael addition, followed by r-bond rotation and hydrogen (or deuterium) elimination to yield the Z-isomer. Feeding the roots under light and dark conditions with E-cinnamic- 2,3,20,30,40,50,60-d7 acid gave scopoletin-d3 with no significant difference in the yields. We conclude that the E-Z-isomerisation stage in the biosynthesis of scopoletin and scopolin, in cassava roots during PPD, is not photochemical, but could be catalysed by an isomerase which is independent of light.
Original languageEnglish
Pages (from-to)2928-2936
Number of pages9
JournalPhytochemistry
Volume69
Issue number17
Early online date10 Nov 2008
DOIs
Publication statusPublished - Dec 2008

Fingerprint

Scopoletin
scopoletin
Manihot
isomerization
Biosynthesis
Isomerization
cassava
Deterioration
deterioration
biosynthesis
deuterium
Deuterium
cinnamic acid
hydrogen
Acids
Hydrogen
acids
Light
Coumarins
Isomerases

Cite this

Biosynthesis of scopoletin and scopolin in cassava roots during post-harvest physiological deterioration: The E-Z-isomerisation stage. / Bayoumi, S A L; Rowan, Michael G; Blagbrough, I S; Beeching, J R.

In: Phytochemistry, Vol. 69, No. 17, 12.2008, p. 2928-2936.

Research output: Contribution to journalArticle

@article{392a1fe396944895867f7dede5e9f8b5,
title = "Biosynthesis of scopoletin and scopolin in cassava roots during post-harvest physiological deterioration: The E-Z-isomerisation stage",
abstract = "Two to three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer from post-harvest physiological deterioration (PPD) when secondary metabolites are accumulated. Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside scopolin) which play roles in plant defence and have pharmacological activities. Some steps in the biosynthesis of these molecules are still unknown in cassava and in other plants. We exploit the accumulation of these coumarins during PPD to investigate the E-Z-isomerisation step in their biosynthesis. Feeding cubed cassava roots with E-cinnamic- 3,20,30,40,50,60-d5 acid gave scopoletin-d2. However, feeding with E-cinnamic-3,20,30,40,50,60-d6 and E-cinnamic-2,3,20,30,40,50,60-d7 acids, both gave scopoletin-d3, the latter not affording the expected scopoletin- d4. We therefore synthesised and fed with E-cinnamic-2-d1 when unlabelled scopoletin was biosynthesised. Solely the hydrogen (or deuterium) at C2 of cinnamic acid is exchanged in the biosynthesis of hydroxycoumarins. If the mechanism of E-Z-cinnamic acid isomerisation were photochemical, we would not expect to see the loss of deuterium which we observed. Therefore, a possible mechanism is an enzyme catalysed 1,4-Michael addition, followed by r-bond rotation and hydrogen (or deuterium) elimination to yield the Z-isomer. Feeding the roots under light and dark conditions with E-cinnamic- 2,3,20,30,40,50,60-d7 acid gave scopoletin-d3 with no significant difference in the yields. We conclude that the E-Z-isomerisation stage in the biosynthesis of scopoletin and scopolin, in cassava roots during PPD, is not photochemical, but could be catalysed by an isomerase which is independent of light.",
author = "Bayoumi, {S A L} and Rowan, {Michael G} and Blagbrough, {I S} and Beeching, {J R}",
year = "2008",
month = "12",
doi = "10.1016/j.phytochem.2008.09.023",
language = "English",
volume = "69",
pages = "2928--2936",
journal = "Phytochemistry",
issn = "0031-9422",
publisher = "Elsevier",
number = "17",

}

TY - JOUR

T1 - Biosynthesis of scopoletin and scopolin in cassava roots during post-harvest physiological deterioration: The E-Z-isomerisation stage

AU - Bayoumi, S A L

AU - Rowan, Michael G

AU - Blagbrough, I S

AU - Beeching, J R

PY - 2008/12

Y1 - 2008/12

N2 - Two to three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer from post-harvest physiological deterioration (PPD) when secondary metabolites are accumulated. Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside scopolin) which play roles in plant defence and have pharmacological activities. Some steps in the biosynthesis of these molecules are still unknown in cassava and in other plants. We exploit the accumulation of these coumarins during PPD to investigate the E-Z-isomerisation step in their biosynthesis. Feeding cubed cassava roots with E-cinnamic- 3,20,30,40,50,60-d5 acid gave scopoletin-d2. However, feeding with E-cinnamic-3,20,30,40,50,60-d6 and E-cinnamic-2,3,20,30,40,50,60-d7 acids, both gave scopoletin-d3, the latter not affording the expected scopoletin- d4. We therefore synthesised and fed with E-cinnamic-2-d1 when unlabelled scopoletin was biosynthesised. Solely the hydrogen (or deuterium) at C2 of cinnamic acid is exchanged in the biosynthesis of hydroxycoumarins. If the mechanism of E-Z-cinnamic acid isomerisation were photochemical, we would not expect to see the loss of deuterium which we observed. Therefore, a possible mechanism is an enzyme catalysed 1,4-Michael addition, followed by r-bond rotation and hydrogen (or deuterium) elimination to yield the Z-isomer. Feeding the roots under light and dark conditions with E-cinnamic- 2,3,20,30,40,50,60-d7 acid gave scopoletin-d3 with no significant difference in the yields. We conclude that the E-Z-isomerisation stage in the biosynthesis of scopoletin and scopolin, in cassava roots during PPD, is not photochemical, but could be catalysed by an isomerase which is independent of light.

AB - Two to three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer from post-harvest physiological deterioration (PPD) when secondary metabolites are accumulated. Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside scopolin) which play roles in plant defence and have pharmacological activities. Some steps in the biosynthesis of these molecules are still unknown in cassava and in other plants. We exploit the accumulation of these coumarins during PPD to investigate the E-Z-isomerisation step in their biosynthesis. Feeding cubed cassava roots with E-cinnamic- 3,20,30,40,50,60-d5 acid gave scopoletin-d2. However, feeding with E-cinnamic-3,20,30,40,50,60-d6 and E-cinnamic-2,3,20,30,40,50,60-d7 acids, both gave scopoletin-d3, the latter not affording the expected scopoletin- d4. We therefore synthesised and fed with E-cinnamic-2-d1 when unlabelled scopoletin was biosynthesised. Solely the hydrogen (or deuterium) at C2 of cinnamic acid is exchanged in the biosynthesis of hydroxycoumarins. If the mechanism of E-Z-cinnamic acid isomerisation were photochemical, we would not expect to see the loss of deuterium which we observed. Therefore, a possible mechanism is an enzyme catalysed 1,4-Michael addition, followed by r-bond rotation and hydrogen (or deuterium) elimination to yield the Z-isomer. Feeding the roots under light and dark conditions with E-cinnamic- 2,3,20,30,40,50,60-d7 acid gave scopoletin-d3 with no significant difference in the yields. We conclude that the E-Z-isomerisation stage in the biosynthesis of scopoletin and scopolin, in cassava roots during PPD, is not photochemical, but could be catalysed by an isomerase which is independent of light.

UR - http://www.scopus.com/inward/record.url?scp=56249111301&partnerID=8YFLogxK

UR - http://dx.doi.org/10.1016/j.phytochem.2008.09.023

U2 - 10.1016/j.phytochem.2008.09.023

DO - 10.1016/j.phytochem.2008.09.023

M3 - Article

VL - 69

SP - 2928

EP - 2936

JO - Phytochemistry

JF - Phytochemistry

SN - 0031-9422

IS - 17

ER -