Biologically inspired microtexturing: investigation into the surface topography of next-generation neurosurgical probes

L Frasson, T Parittotokkaporn, A Schneider, B L Davies, J F V Vincent, S E Huq, P Degenaar, F M Rodriguez Baena

Research output: Contribution to conferencePaper

19 Citations (Scopus)

Abstract

Minimally Invasive (MI) surgery represents the future of many types of medical intervention (keyhole neurosurgery, natural orifice trans-luminal endoscopic surgery, etc.). However, the shortcomings of today's surgical tools fuel the need for the development of next-generation "smart instrumentation", which will be more accurate and safer for the patient. This paper presents the preliminary results of a biologically inspired microtexturing method, based on UV-lithography, and its application to MI neurosurgery. These results suggest that the size and geometry of the texture "printed" on the outer surface of a neurosurgical probe clearly affect the insertion and extraction forces generated at the brainprobe interface. Thus, by carefully choosing an appropriate microtexture, unique insertion characteristics can be obtained, which can improve the performance of existing instruments (e.g. reducing slippage in permanent electrodes such as those used in deep brain stimulation) or enable the development of novel designs altogether.
Original languageEnglish
Pages5611-5614
Number of pages4
Publication statusPublished - Aug 2008
Event30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - Vancouver, BC, Canada
Duration: 20 Aug 200825 Aug 2008

Conference

Conference30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08
CountryCanada
CityVancouver, BC
Period20/08/0825/08/08

Keywords

  • Pressure and Temperature
  • 944 Moisture
  • Liquids and Solids - 462.1 Biomedical Equipment
  • and Radiation Measuring Instruments - 943 Mechanical and Miscellaneous Measuring Instruments - 942 Electric and Electronic Measuring Instruments - 941 Acoustical and Optical Measuring Instruments - 931.2 Physical Properties of Gases
  • General - 461.6 Medicine and Pharmacology

Fingerprint Dive into the research topics of 'Biologically inspired microtexturing: investigation into the surface topography of next-generation neurosurgical probes'. Together they form a unique fingerprint.

  • Cite this

    Frasson, L., Parittotokkaporn, T., Schneider, A., Davies, B. L., Vincent, J. F. V., Huq, S. E., Degenaar, P., & Baena, F. M. R. (2008). Biologically inspired microtexturing: investigation into the surface topography of next-generation neurosurgical probes. 5611-5614. Paper presented at 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08, Vancouver, BC, Canada.