TY - GEN
T1 - Bending actuation of a composite liquid crystal elastomer via direct Joule heating
AU - Greco, F.
AU - Domenici, V.
AU - Assaf, T.
AU - Romiti, S.
AU - Mattoli, V.
PY - 2012/8/30
Y1 - 2012/8/30
N2 - In this work a new bi-layered composite actuator based on a polysiloxane-based monodomain nematic Liquid Crystal Elastomer (LCE) and on a conductive PEDOT:PSS thin layer is proposed. The basic idea is to integrate electroconductive properties in the LCE and to validate the feasibility of direct actuation of the LCE by Joule heating of the conductive (and compliant) PEDOT:PSS layer. The fabrication of the actuator is achieved by depositing a thin conductive polymer layer by drop casting a PEDOT:PSS waterborne solution after having increased the LCE surface wettability with an air plasma treatment. The excellent stability of PEDOT:PSS and its mechanical properties, better matched with LCE ones compared to metals or inorganic nanoparticles used in other approaches, allowed to develop an all-organic reliable actuating composite based on thermoresponsive properties of LCE. Thermal actuation via direct Joule heating of the composite has been verified and prototypes of LCE/PEDOT:PSS bending actuators have been preliminary tested.
AB - In this work a new bi-layered composite actuator based on a polysiloxane-based monodomain nematic Liquid Crystal Elastomer (LCE) and on a conductive PEDOT:PSS thin layer is proposed. The basic idea is to integrate electroconductive properties in the LCE and to validate the feasibility of direct actuation of the LCE by Joule heating of the conductive (and compliant) PEDOT:PSS layer. The fabrication of the actuator is achieved by depositing a thin conductive polymer layer by drop casting a PEDOT:PSS waterborne solution after having increased the LCE surface wettability with an air plasma treatment. The excellent stability of PEDOT:PSS and its mechanical properties, better matched with LCE ones compared to metals or inorganic nanoparticles used in other approaches, allowed to develop an all-organic reliable actuating composite based on thermoresponsive properties of LCE. Thermal actuation via direct Joule heating of the composite has been verified and prototypes of LCE/PEDOT:PSS bending actuators have been preliminary tested.
UR - http://www.scopus.com/inward/record.url?scp=84867422734&partnerID=8YFLogxK
U2 - 10.1109/BioRob.2012.6290942
DO - 10.1109/BioRob.2012.6290942
M3 - Chapter in a published conference proceeding
AN - SCOPUS:84867422734
SN - 9781457711992
T3 - Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
SP - 646
EP - 651
BT - 2012 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2012
T2 - 2012 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2012
Y2 - 24 June 2012 through 27 June 2012
ER -