Average-Case Approximation Ratio of Scheduling without Payments

Research output: Contribution to journalArticlepeer-review

1 Citation (SciVal)


Apart from the principles and methodologies inherited from Economics and Game Theory, the studies in Algorithmic Mechanism Design typically employ the worst-case analysis and design of approximation schemes of Theoretical Computer Science. For instance, the approximation ratio, which is the canonical measure of evaluating how well an incentive-compatible mechanism approximately optimizes the objective, is defined in the worst-case sense. It compares the performance of the optimal mechanism against the performance of a truthful mechanism, for all possible inputs. In this paper, we take the average-case analysis approach, and tackle one of the primary motivating problems in Algorithmic Mechanism Design—the scheduling problem (Nisan and Ronen, in: Proceedings of the 31st annual ACM symposium on theory of computing (STOC), 1999). One version of this problem, which includes a verification component, is studied by Koutsoupias (Theory Comput Syst 54(3):375–387, 2014). It was shown that the problem has a tight approximation ratio bound of (n+1)/2 for the single-task setting, where n is the number of machines. We show, however, when the costs of the machines to executing the task follow any independent and identical distribution, the average-case approximation ratio of the mechanism given by Koutsoupias (Theory Comput Syst 54(3):375–387, 2014) is upper bounded by a constant. This positive result asymptotically separates the average-case ratio from the worst-case ratio. It indicates that the optimal mechanism devised for a worst-case guarantee works well on average.
Original languageEnglish
Pages (from-to)1638–1652
Number of pages15
Issue number6
Early online date18 Jan 2021
Publication statusPublished - 1 Jun 2021


  • Approximation ratio
  • Average-case analysis
  • Scheduling


Dive into the research topics of 'Average-Case Approximation Ratio of Scheduling without Payments'. Together they form a unique fingerprint.

Cite this