Automatic recognition of underwater munitions from multi-view sonar surveys using semi supervised machine learning: a simulation study

Oscar Bryan, Alan J. Hunter, Tom S. F. Haines, Roy Edgar Hansen, Narada Warakagoda

Research output: Contribution to journalConference articlepeer-review

Abstract

This paper presents a machine learning technique for using large unlabelled survey datasets to aid automatic classification. We have demonstrated the benefit of this technique on a simulated synthetic aperture sonar (SAS) dataset. We designed a machine learning model to encode a representation of SAS images from which new SAS views can be generated. This novel task requires the model to learn the physics and content of SAS images without the requirement for human labels. This is called self-supervised learning. The pre-trained model can then be fine-tuned to perform classification on a small amount of labelled examples. This is called semi-supervised learning. By using a simulated dataset we can step-by-step increase the realism to identify the sources of difficulty for applying this method to real SAS data, and have a performance bench mark from this more idealised dataset. We have quantified the improved accuracy for the re-view model (ours), against a traditional self-supervised approach (autoencoder), and no pre-training. We have also demonstrated generating novel views to qualitatively inspect the model's learned representation. These results demonstrate our re-view self-supervised task aids the downstream classification task and model interpretability on simulated data, with immediate potential for application to real-world UXO monitoring.
Original languageEnglish
Article number070018
JournalProceedings of Meetings on Acoustics
Volume47
Issue number1
Early online date28 Oct 2022
DOIs
Publication statusE-pub ahead of print - 28 Oct 2022
EventInternational Conference on Underwater Acoustics ICUA-2022 - Southampton, UK United Kingdom
Duration: 19 Jun 202223 Jun 2022
https://icua2022.org/

Fingerprint

Dive into the research topics of 'Automatic recognition of underwater munitions from multi-view sonar surveys using semi supervised machine learning: a simulation study'. Together they form a unique fingerprint.

Cite this