Abstract
Hippocampal volumetric measures may be useful for Alzheimer's disease (AD) diagnosis and disease tracking; however, manual segmentation of the hippocampus is labour-intensive. Therefore, automated techniques are necessary for large studies and to make hippocampal measures feasible for clinical use. As large studies and clinical centres are moving from using 1.5 Tesla (T) scanners to higher field strengths it is important to assess whether specific image processing techniques can be used at these field strengths. This study investigated whether an automated hippocampal segmentation technique (HMAPS: hippocampal multi-atlas propagation and segmentation) and volume change measures (BSI: boundary shift integral) were as accurate at 3T as at 1.5T. Eighteen Alzheimer's disease patients and 18 controls with 1.5T and 3T scans at baseline and 12-month follow-up were used from the Alzheimer's Disease Neuroimaging Initiative cohort. Baseline scans were segmented manually and using HMAPS and their similarity was measured by the Jaccard index. BSIs were calculated for serial image pairs. We calculated pair-wise differences between manual and HMAPS rates at 1.5T and 3T and compared the SD of these differences at each field strength. The difference in mean Jaccards (manual and HMAPS) between 1.5T and 3T was small with narrow confidence intervals (CIs) and did not appear to be segmentor dependent. The SDs of the difference between volumes from manual and automated segmentations were similar at 1.5T and 3T, with a relatively narrow CI for their ratios. The SDs of the difference between BSIs from manual and automated segmentations were also similar at 1.5T and 3T but with a wider CI for their ratios. This study supports the use of our automated hippocampal voluming methods, developed using 1.5T images, with 3T images.
Original language | English |
---|---|
Pages (from-to) | 405-412 |
Number of pages | 8 |
Journal | Neuroinformatics |
Volume | 12 |
Issue number | 3 |
Early online date | 7 Jan 2014 |
DOIs | |
Publication status | Published - 1 Jul 2014 |
Funding
Acknowledgments This work was supported by the NIHR Queen Square Dementia Biomedical Research Unit, the Wolfson Foundation, the Medical Research Council, Alzheimer’s Research UK and the Alzheimer’s Disease Neuroimaging Initiative. The Dementia Research Centre is an Alzheimer’s Research UK Co-ordinating Centre and has also received equipment funded by the Alzheimer’s Research UK. SO is supported by MRC, CBRC (grant 168), and EPSRC. JB is supported by an Alzheimer’s Research UK Senior Research Fellowship. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129 and K01 AG030514.
Keywords
- Alzheimer's disease
- Atrophy rate
- Automated segmentation
- Field strength
- Hippocampus
- Magnetic resonance imaging
ASJC Scopus subject areas
- Software
- General Neuroscience
- Information Systems