Abstract
Intelligent tutoring systems (ITS) have been shown to be highly effective at promoting learning as compared to other computer-based instructional approaches. However, many ITS rely heavily on expert design and hand-crafted rules. This makes them difficult to build and transfer across domains and limits their potential efficacy. In this paper, we investigate how feedback in a large-scale ITS can be automatically generated in a data-driven way, and more specifically how personalization of feedback can lead to improvements in student performance outcomes. First, in this paper we propose a machine learning approach to generate personalized feedback in an automated way, which takes individual needs of students into account, while alleviating the need of expert intervention and design of hand-crafted rules. We leverage state-of-the-art machine learning and natural language processing techniques to provide students with personalized feedback using hints and Wikipedia-based explanations. Second, we demonstrate that personalized feedback leads to improved success rates at solving exercises in practice: our personalized feedback model is used in Korbit, a large-scale dialogue-based ITS with around 20,000 students launched in 2019. We present the results of experiments with students and show that the automated, data-driven, personalized feedback leads to a significant overall improvement of 22.95% in student performance outcomes and substantial improvements in the subjective evaluation of the feedback.
Original language | English |
---|---|
Pages (from-to) | 323-349 |
Number of pages | 27 |
Journal | International Journal of Artificial Intelligence in Education |
Volume | 32 |
Issue number | 2 |
Early online date | 27 Jul 2021 |
DOIs | |
Publication status | Published - 30 Jun 2022 |
Keywords
- Data science education
- Deep learning
- Dialogue-based tutoring systems
- Intelligent tutoring systems
- Natural language processing
- Personalized feedback
- Personalized learning
ASJC Scopus subject areas
- Education
- Computational Theory and Mathematics