Assessment of unsteady behavior in turbocharger turbines

Aaron Costall, Shinri Szymko, Ricardo F. Martinez-Botas, Dietmar Filsinger, Dobrivoje Ninkovic

Research output: Chapter in Book/Report/Conference proceedingConference contribution

45 Citations (Scopus)

Abstract

The flow in turbocharger turbines is highly unsteady in nature as it responds to the exhaust manifold of an internal combustion engine. This paper investigates the significance of unsteadiness by examining first its relevance to real engine situations and then its effect on turbocharger turbine operation. The engine simulations carried out show the relevance of the Strouhal number effect for real turbocharger applications, which has been demonstrated experimentally on a turbine stage test stand. Therefore, for realistic multiple-cylinder-engine configurations with different exhaust gas pipe lengths and firing frequencies the importance of the actual unsteady behavior needs careful assessment. The effect upon the turbine itself is examined by modeling the laboratory arrangement to replicate the test stand configuration and operation using a one-dimensional wave action code. The ID model is validated against experimental results obtained using a new permanent magnet eddy-current dynamometer for a mixed flow turbine suitable for a medium-sized automotive application covering an equivalent speed range of 50-100%, U2/Cis of 0.3-1.1 and a pulse frequency of 20-80 Hz. The turbine model has been refined using unsteady experimental data and so enables the capture of unsteady effects in engine design codes. The beneficial effect of the ability of this model to predict turbine mass flow is discussed.

Original languageEnglish
Title of host publicationProceedings of the ASME Turbo Expo 2006 - Power for Land, Sea, and Air
Pages1023-1038
Number of pages16
DOIs
Publication statusPublished - 2006
Event2006 ASME 51st Turbo Expo - Barcelona, Spain
Duration: 6 May 200611 May 2006

Publication series

NameProceedings of the ASME Turbo Expo
Volume6 PART B

Conference

Conference2006 ASME 51st Turbo Expo
CountrySpain
CityBarcelona
Period6/05/0611/05/06

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint Dive into the research topics of 'Assessment of unsteady behavior in turbocharger turbines'. Together they form a unique fingerprint.

Cite this