Projects per year
Abstract
This paper investigates changes in storm runoff resulting from the transformation of previously rural landscapes into peri-urban areas. Two adjacent catchments (∼5km2) located within the town of Swindon in the United Kingdom were monitored during 2011 and 2012 providing continuous records of rainfall, runoff and actual evaporation. One catchment is highly urbanized and the other is a recently developed peri-urban area containing two distinct areas of drainage: one with mixed natural and storm drainage pathways, the other entirely storm drainage. Comparison of observed storm hydrographs showed that the degree of area serviced by storm drainage was a stronger determinant of storm runoff response than either impervious area or development type and that little distinction in hydrological response exists between urban and peri-urban developments of similar impervious cover when no significant hydraulic alteration is present. Historical levels of urbanization and impervious cover were mapped from the 1960s to the 2010s based on digitized historical topographic maps and were combined with a hydrological model to enable backcasting of the present day storm runoff response to that of the catchments in their earlier states. Results from the peri-urban catchment showed an increase in impervious cover from 11% in the 1960s to 44% in 2010s, and introduction of a large-scale storm drainage system in the early 2000s, was accompanied by a 50% reduction in the Muskingum routing parameter k, reducing the characteristic flood duration by over 50% while increasing peak flow by over 400%. Comparisons with changes in storm runoff response in the more urban area suggest that the relative increase in peak flows and reduction in flood duration and response time of a catchment is greatest at low levels of urbanization and that the introduction of storm water conveyance systems significantly increases the flashiness of storm runoff above that attributed to impervious area alone.
This study demonstrates that careful consideration is required when using impervious cover data and when designing flood mitigation measures, particularly in peri-urban areas where a widespread loss in pervious surfaces and alteration of drainage pathways can significantly alter the storm runoff response. Recommendations include utilizing more refined urban land use typologies that can better represent physical alteration of hydrological pathways.
This study demonstrates that careful consideration is required when using impervious cover data and when designing flood mitigation measures, particularly in peri-urban areas where a widespread loss in pervious surfaces and alteration of drainage pathways can significantly alter the storm runoff response. Recommendations include utilizing more refined urban land use typologies that can better represent physical alteration of hydrological pathways.
Original language | English |
---|---|
Pages (from-to) | 59-70 |
Number of pages | 12 |
Journal | Journal of Hydrology |
Volume | 515 |
Early online date | 19 Apr 2014 |
DOIs | |
Publication status | Published - 16 Jul 2014 |
Keywords
- Urbanization
- Storm runoff
- Impervious cover
- Peri-urban
- Hydrological model
ASJC Scopus subject areas
- Water Science and Technology
Fingerprint
Dive into the research topics of 'Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Changes in Urbanisation and its Effects on Water Quality from Local to Regional Scale
Kjeldsen, T. (PI)
Natural Environment Research Council
1/09/13 → 28/02/16
Project: Research council
Profiles
-
Thomas Kjeldsen
- Department of Architecture & Civil Engineering - Reader
- Water Innovation and Research Centre (WIRC)
- EPSRC Centre for Doctoral Training in Statistical Applied Mathematics (SAMBa)
- Institute for Mathematical Innovation (IMI)
- Centre for Regenerative Design & Engineering for a Net Positive World (RENEW)
- Centre for Climate Adaptation & Environment Research (CAER)
Person: Research & Teaching, Core staff, Affiliate staff