Abstract

Methods to manufacture modern composites based on ferroelectrics are described and compared. The overwhelming majority of the well-approved methods are concerned with manufacturing of the ferroelectric ceramic/polymer composites that have been widespread for the past decades. The methods to manufacture the piezo-active composites are based on knowledge of physics, chemistry, materials science and technological principles. In the present work, the main emphasis is placed on applications of dielectrophoresis to form long chains of aligned and closely connected ceramic particles in an electric field, when the matrix polymer is in a low-viscosity state. The methods are suitable for the manufacture piezo-active 0–3, 1–3 and quasi 1–3 ceramic/polymer composites including those for sensor and high-temperature applications. A ceramic-based composite with a foam polymer matrix is also manufactured, and its performance is compared to that of a related 0–3 ceramic/polymer composite.

Original languageEnglish
Title of host publicationPiezo-Particulate Composites
EditorsHamideh Khanbareh, Vitaly Yu. Topolov, Christopher Bowen
PublisherSpringer Verlag
Pages25-53
Number of pages29
DOIs
Publication statusE-pub ahead of print - 26 May 2019

Publication series

NameSpringer Series in Materials Science
Volume283
ISSN (Print)0933-033X

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Aspects of composite manufacturing'. Together they form a unique fingerprint.

Cite this