Arresting “Loose Bolt” Internal Conversion from −B(OH)2 Groups is the Mechanism for Emission Turn-On in ortho-Aminomethylphenylboronic Acid-Based Saccharide Sensors

Xiaolong Sun, Tony D. James, Eric V. Anslyn

Research output: Contribution to journalArticle

  • 4 Citations

Abstract

Different mechanisms for the emission turn-on of ortho-aminomethylphenylboronic acids with appended fluorophores in response to saccharide binding in aqueous media have been postulated, such as photoinduced electron transfer (PET), “pKa switch”, and disaggregation. However, none of the hypotheses is consistent with all the data for boronic acid–based sensors. To create a unifying theory that can explain the data, we performed a series of experiments to explore the origin of the emission turn-on with several boronic-acid based sensors upon binding fructose. First, we showed that the receptors and their complexes with fructose are solvent-inserted, with no B–N interactions. Second, we verified that the sensors are not aggregated. Third, in pure methanol, that exchanges −B(OH)2 to −B(OMe)2 groups, we found no fluorescence response upon binding fructose. We propose this occurs via lessening of internal conversion mechanisms. To investigate this proposal further, we performed a solvent isotope effect study. The fluorescence of the probes in D2O (−B(OH)2 → −B(OD)2) does not change upon fructose binding. It is well accepted that −OD oscillators are less efficient energy acceptors due to their lower frequency vibrational modes. Thus, our studies reveal that modulating the −B(OH)2-induced internal conversion (an example of a “loose bolt effect”) explains how potentially all ortho-aminomethylphenylboronic acid-based fluorescence sensors signal the presence of sugars.

LanguageEnglish
Pages2348-2354
Number of pages7
JournalJournal of the American Chemical Society
Volume140
Issue number6
Early online date23 Jan 2018
DOIs
StatusPublished - 14 Feb 2018

Fingerprint

Fructose
Bolts
Boronic Acids
Acids
Fluorescence
Sensors
Fluorophores
Vibrational spectra
Sugars
Isotopes
Methanol
Switches
Electrons
Experiments

Cite this

@article{d5979a7d4b0e46cb992fffd8121dcbd1,
title = "Arresting “Loose Bolt” Internal Conversion from −B(OH)2 Groups is the Mechanism for Emission Turn-On in ortho-Aminomethylphenylboronic Acid-Based Saccharide Sensors",
abstract = "Different mechanisms for the emission turn-on of ortho-aminomethylphenylboronic acids with appended fluorophores in response to saccharide binding in aqueous media have been postulated, such as photoinduced electron transfer (PET), “pKa switch”, and disaggregation. However, none of the hypotheses is consistent with all the data for boronic acid–based sensors. To create a unifying theory that can explain the data, we performed a series of experiments to explore the origin of the emission turn-on with several boronic-acid based sensors upon binding fructose. First, we showed that the receptors and their complexes with fructose are solvent-inserted, with no B–N interactions. Second, we verified that the sensors are not aggregated. Third, in pure methanol, that exchanges −B(OH)2 to −B(OMe)2 groups, we found no fluorescence response upon binding fructose. We propose this occurs via lessening of internal conversion mechanisms. To investigate this proposal further, we performed a solvent isotope effect study. The fluorescence of the probes in D2O (−B(OH)2 → −B(OD)2) does not change upon fructose binding. It is well accepted that −OD oscillators are less efficient energy acceptors due to their lower frequency vibrational modes. Thus, our studies reveal that modulating the −B(OH)2-induced internal conversion (an example of a “loose bolt effect”) explains how potentially all ortho-aminomethylphenylboronic acid-based fluorescence sensors signal the presence of sugars.",
author = "Xiaolong Sun and James, {Tony D.} and Anslyn, {Eric V.}",
year = "2018",
month = "2",
day = "14",
doi = "10.1021/jacs.7b12877",
language = "English",
volume = "140",
pages = "2348--2354",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "AMER CHEMICAL SOC",
number = "6",

}

TY - JOUR

T1 - Arresting “Loose Bolt” Internal Conversion from −B(OH)2 Groups is the Mechanism for Emission Turn-On in ortho-Aminomethylphenylboronic Acid-Based Saccharide Sensors

AU - Sun,Xiaolong

AU - James,Tony D.

AU - Anslyn,Eric V.

PY - 2018/2/14

Y1 - 2018/2/14

N2 - Different mechanisms for the emission turn-on of ortho-aminomethylphenylboronic acids with appended fluorophores in response to saccharide binding in aqueous media have been postulated, such as photoinduced electron transfer (PET), “pKa switch”, and disaggregation. However, none of the hypotheses is consistent with all the data for boronic acid–based sensors. To create a unifying theory that can explain the data, we performed a series of experiments to explore the origin of the emission turn-on with several boronic-acid based sensors upon binding fructose. First, we showed that the receptors and their complexes with fructose are solvent-inserted, with no B–N interactions. Second, we verified that the sensors are not aggregated. Third, in pure methanol, that exchanges −B(OH)2 to −B(OMe)2 groups, we found no fluorescence response upon binding fructose. We propose this occurs via lessening of internal conversion mechanisms. To investigate this proposal further, we performed a solvent isotope effect study. The fluorescence of the probes in D2O (−B(OH)2 → −B(OD)2) does not change upon fructose binding. It is well accepted that −OD oscillators are less efficient energy acceptors due to their lower frequency vibrational modes. Thus, our studies reveal that modulating the −B(OH)2-induced internal conversion (an example of a “loose bolt effect”) explains how potentially all ortho-aminomethylphenylboronic acid-based fluorescence sensors signal the presence of sugars.

AB - Different mechanisms for the emission turn-on of ortho-aminomethylphenylboronic acids with appended fluorophores in response to saccharide binding in aqueous media have been postulated, such as photoinduced electron transfer (PET), “pKa switch”, and disaggregation. However, none of the hypotheses is consistent with all the data for boronic acid–based sensors. To create a unifying theory that can explain the data, we performed a series of experiments to explore the origin of the emission turn-on with several boronic-acid based sensors upon binding fructose. First, we showed that the receptors and their complexes with fructose are solvent-inserted, with no B–N interactions. Second, we verified that the sensors are not aggregated. Third, in pure methanol, that exchanges −B(OH)2 to −B(OMe)2 groups, we found no fluorescence response upon binding fructose. We propose this occurs via lessening of internal conversion mechanisms. To investigate this proposal further, we performed a solvent isotope effect study. The fluorescence of the probes in D2O (−B(OH)2 → −B(OD)2) does not change upon fructose binding. It is well accepted that −OD oscillators are less efficient energy acceptors due to their lower frequency vibrational modes. Thus, our studies reveal that modulating the −B(OH)2-induced internal conversion (an example of a “loose bolt effect”) explains how potentially all ortho-aminomethylphenylboronic acid-based fluorescence sensors signal the presence of sugars.

U2 - 10.1021/jacs.7b12877

DO - 10.1021/jacs.7b12877

M3 - Article

VL - 140

SP - 2348

EP - 2354

JO - Journal of the American Chemical Society

T2 - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 6

ER -