Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P-2] is a phospholipid that has a role in controlling membrane trafficking events in yeast and animal cells. The function of this lipid in plants is unknown, although its synthesis has been shown to be up-regulated upon osmotic stress in plant cells. PtdIns(3,5)P-2 is synthesized by the PIKfyve/Fab1 family of proteins, with two orthologs, FAB1A and FAB1B, being present in Arabidopsis (Arabidopsis thaliana). In this study, we attempt to address the role of this lipid by analyzing the phenotypes of plants mutated in FAB1A and FAB1B. It was not possible to generate plants homozygous for mutations in both genes, although single mutants were isolated. Both homozygous single mutant plant lines exhibited a leaf curl phenotype that was more marked in FAB1B mutants. Genetic transmission analysis revealed that failure to generate double mutant lines was entirely due to inviability of pollen carrying mutant alleles of both FAB1A and FAB1B. This pollen displayed severe defects in vacuolar reorganization following the first mitotic division of development. The presence of abnormally large vacuoles in pollen at the tricellular stage resulted in the collapse of the majority of grains carrying both mutant alleles. This demonstrates a crucial role for PtdIns(3,5)P-2 in modulating the dynamics of vacuolar rearrangement essential for successful pollen development. Taken together, our results are consistent with PtdIns(3,5)P-2 production being central to cellular responses to changes in osmotic conditions.
Original languageEnglish
Pages (from-to)1812-1822
Number of pages11
JournalPlant Physiology
Volume151
Issue number4
Early online date30 Sep 2009
DOIs
Publication statusPublished - Dec 2009

Fingerprint

Pollen
Arabidopsis
pollen
mutants
Proteins
proteins
Alleles
Phenotype
Lipids
Osmotic Pressure
Plant Cells
Vacuoles
alleles
phenotype
Phospholipids
leaf curling
Yeasts
phosphatidylinositols
lipids
osmotic stress

Cite this

Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen. / Whitley, Paul; Hinz, S; Doughty, James.

In: Plant Physiology, Vol. 151, No. 4, 12.2009, p. 1812-1822.

Research output: Contribution to journalArticle

@article{68275ce1b5b043dd991f61f76c2ea141,
title = "Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen",
abstract = "Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P-2] is a phospholipid that has a role in controlling membrane trafficking events in yeast and animal cells. The function of this lipid in plants is unknown, although its synthesis has been shown to be up-regulated upon osmotic stress in plant cells. PtdIns(3,5)P-2 is synthesized by the PIKfyve/Fab1 family of proteins, with two orthologs, FAB1A and FAB1B, being present in Arabidopsis (Arabidopsis thaliana). In this study, we attempt to address the role of this lipid by analyzing the phenotypes of plants mutated in FAB1A and FAB1B. It was not possible to generate plants homozygous for mutations in both genes, although single mutants were isolated. Both homozygous single mutant plant lines exhibited a leaf curl phenotype that was more marked in FAB1B mutants. Genetic transmission analysis revealed that failure to generate double mutant lines was entirely due to inviability of pollen carrying mutant alleles of both FAB1A and FAB1B. This pollen displayed severe defects in vacuolar reorganization following the first mitotic division of development. The presence of abnormally large vacuoles in pollen at the tricellular stage resulted in the collapse of the majority of grains carrying both mutant alleles. This demonstrates a crucial role for PtdIns(3,5)P-2 in modulating the dynamics of vacuolar rearrangement essential for successful pollen development. Taken together, our results are consistent with PtdIns(3,5)P-2 production being central to cellular responses to changes in osmotic conditions.",
author = "Paul Whitley and S Hinz and James Doughty",
year = "2009",
month = "12",
doi = "10.1104/pp.109.146159",
language = "English",
volume = "151",
pages = "1812--1822",
journal = "Plant Physiology",
issn = "0032-0889",
publisher = "American Society of Plant Biologists",
number = "4",

}

TY - JOUR

T1 - Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen

AU - Whitley, Paul

AU - Hinz, S

AU - Doughty, James

PY - 2009/12

Y1 - 2009/12

N2 - Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P-2] is a phospholipid that has a role in controlling membrane trafficking events in yeast and animal cells. The function of this lipid in plants is unknown, although its synthesis has been shown to be up-regulated upon osmotic stress in plant cells. PtdIns(3,5)P-2 is synthesized by the PIKfyve/Fab1 family of proteins, with two orthologs, FAB1A and FAB1B, being present in Arabidopsis (Arabidopsis thaliana). In this study, we attempt to address the role of this lipid by analyzing the phenotypes of plants mutated in FAB1A and FAB1B. It was not possible to generate plants homozygous for mutations in both genes, although single mutants were isolated. Both homozygous single mutant plant lines exhibited a leaf curl phenotype that was more marked in FAB1B mutants. Genetic transmission analysis revealed that failure to generate double mutant lines was entirely due to inviability of pollen carrying mutant alleles of both FAB1A and FAB1B. This pollen displayed severe defects in vacuolar reorganization following the first mitotic division of development. The presence of abnormally large vacuoles in pollen at the tricellular stage resulted in the collapse of the majority of grains carrying both mutant alleles. This demonstrates a crucial role for PtdIns(3,5)P-2 in modulating the dynamics of vacuolar rearrangement essential for successful pollen development. Taken together, our results are consistent with PtdIns(3,5)P-2 production being central to cellular responses to changes in osmotic conditions.

AB - Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P-2] is a phospholipid that has a role in controlling membrane trafficking events in yeast and animal cells. The function of this lipid in plants is unknown, although its synthesis has been shown to be up-regulated upon osmotic stress in plant cells. PtdIns(3,5)P-2 is synthesized by the PIKfyve/Fab1 family of proteins, with two orthologs, FAB1A and FAB1B, being present in Arabidopsis (Arabidopsis thaliana). In this study, we attempt to address the role of this lipid by analyzing the phenotypes of plants mutated in FAB1A and FAB1B. It was not possible to generate plants homozygous for mutations in both genes, although single mutants were isolated. Both homozygous single mutant plant lines exhibited a leaf curl phenotype that was more marked in FAB1B mutants. Genetic transmission analysis revealed that failure to generate double mutant lines was entirely due to inviability of pollen carrying mutant alleles of both FAB1A and FAB1B. This pollen displayed severe defects in vacuolar reorganization following the first mitotic division of development. The presence of abnormally large vacuoles in pollen at the tricellular stage resulted in the collapse of the majority of grains carrying both mutant alleles. This demonstrates a crucial role for PtdIns(3,5)P-2 in modulating the dynamics of vacuolar rearrangement essential for successful pollen development. Taken together, our results are consistent with PtdIns(3,5)P-2 production being central to cellular responses to changes in osmotic conditions.

UR - http://www.scopus.com/inward/record.url?scp=71049136485&partnerID=8YFLogxK

UR - http://dx.doi.org/10.1104/pp.109.146159

U2 - 10.1104/pp.109.146159

DO - 10.1104/pp.109.146159

M3 - Article

VL - 151

SP - 1812

EP - 1822

JO - Plant Physiology

JF - Plant Physiology

SN - 0032-0889

IS - 4

ER -