Abstract
Proper identification of grade levels of children's reading materials is an important step towards effective learning. Recent studies in readability assessment for the English domain applied modern approaches in natural language processing (NLP) such as machine learning (ML) techniques to automate the process. There is also a need to extract the correct linguistic features when modeling readability formulas. In the context of the Filipino language, limited work has been done [1, 2], especially in considering the language's lexical complexity as main features. In this paper, we explore the use of lexical features towards improving the development of readability identification of children's books written in Filipino. Results show that combining lexical features (LEX) consisting of type-token ratio, lexical density, lexical variation, foreign word count with traditional features (TRAD) used by previous works such as sentence length, average syllable length, polysyllabic words, word, sentence, and phrase counts increased the performance of readability models by almost a 5% margin (from 42% to 47.2%). Further analysis and ranking of the most important features were shown to identify which features contribute the most in terms of reading complexity.
Original language | English |
---|---|
Publisher | Computing Society of the Philippines (CSP) |
Publication status | Published - 22 Jan 2021 |
Bibliographical note
8 tables, 1 figure. Presented at the Philippine Computing Science Congress 2020Keywords
- cs.CL
- cs.LG