Application of fluid dynamic gauging to annular test apparatuses for studying fouling and cleaning

T Gu, F Albert, W Augustin, Yong Min John Chew, M Mayer, W R Paterson, S Scholl, I Sheikh, K Wang, D I Wilson

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)
165 Downloads (Pure)

Abstract

Fluid dynamic gauging (FDG) is a non-contact technique for measuring the thickness and strength of fouling layers immersed in liquid in situ. Its application to an annular geometry across a range of possible flow conditions, from stagnant to turbulent flow regimes (annulus Reynolds number similar to 29,000), is demonstrated. Two modes of measurement are demonstrated: in the first, the pressure drop across the nozzle is fixed and the mass flow rate of liquid withdrawn through the gauge is measured. In the second, the mass flow rate of liquid is fixed and the pressure drop measured: the latter is a new mode of measurement and it is shown to perform equally well, with advantages for particular applications. The results were not affected significantly by the surface under study being heated, indicating that the technique is suitable for measuring deposit thicknesses in situ during fouling and cleaning experiments in annular devices which are commonly used in deposition studies. Computational fluid dynamics (CFD) simulations, which afford detailed information about the flow patterns and shear stresses imposed on the surface, showed good agreement with experimental data for tests in the laminar regime: simulation of the transitional and turbulent regimes was not attempted. A short study of whey protein fouling recorded mixed success owing to the softness of the deposit, but demonstrated the scope for FDG to monitor the development of fouling layers in these geometries.
Original languageEnglish
Pages (from-to)509-520
Number of pages12
JournalExperimental Thermal and Fluid Science
Volume35
Issue number3
Early online date14 Dec 2010
DOIs
Publication statusPublished - Apr 2011

Keywords

  • cleaning
  • deposit
  • strength
  • thickness
  • fouling
  • CFD

Fingerprint Dive into the research topics of 'Application of fluid dynamic gauging to annular test apparatuses for studying fouling and cleaning'. Together they form a unique fingerprint.

Cite this