Projects per year
Abstract
Sexually transmitted infections (STIs) are predicted to play an important role in the evolution of host mating strategies, and vice versa, yet our understanding of host-STI coevolution is limited. Previous theoretical work has shown mate choice can evolve to prevent runaway STI virulence evolution in chronic, sterilizing infections. Here, I generalize this theory to examine how a broader range of life-history traits influence coevolution; specifically, how host preferences for healthy mates and STI virulence coevolve when infections are acute and can cause mortality or sterility, and hosts do not form long-term sexual partnerships. I show that mate choice reduces both mortality and sterility virulence, with qualitatively different outcomes depending on the mode of virulence, costs associated with mate choice, recovery rates, and host lifespan. For example, fluctuating selection—a key finding in previous work—is most likely when hosts have moderate lifespans, STIs cause sterility and long infections, and costs of mate choice are low. The results reveal new insights into the coevolution of mate choice and STI virulence as different life-history traits vary, providing increased support for parasite-mediated sexual selection as a potential driver of host mate choice, and mate choice as a constraint on the evolution of virulence.
Original language | English |
---|---|
Pages (from-to) | 43-56 |
Number of pages | 14 |
Journal | Evolution |
Volume | 74 |
Issue number | 1 |
Early online date | 15 Nov 2019 |
DOIs | |
Publication status | Published - 6 Jan 2020 |
Bibliographical note
© 2019 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.Keywords
- Fluctuating selection
- STD
- host-parasite
- mate choice
- parasite-mediated sexual selection
- virulence
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Genetics
- General Agricultural and Biological Sciences
Fingerprint
Dive into the research topics of 'Antagonistic coevolution between hosts and sexually transmitted infections'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Fellowship Ben Ashby - Host-parasite Coevolution in Complex Communities
Ashby, B. (PI)
Natural Environment Research Council
1/10/16 → 30/09/22
Project: Research council