Abstract
This paper presents a novel approach to active chatter control in milling operations using a new concept called the virtual inerter-based dynamic vibration absorber (VIDVA). While passive control methods, such as tuned mass damper (TMDs), have their merits, they may not provide optimal performance and adaptability in certain scenarios. Moreover, the realisation of an idealised inerter-based absorber as a localisation addition can be a difficult task to achieve. In response of these challenges, the integration of the inerter concept into virtual passive absorber (VPA) control to improve chatter stability performance is proposed. Four IDVAs are numerically evaluated to enhance the absolute chatter stability limit, and the numerical results are experimentally validated using cutting tests with a proof-mass actuator providing the control force. The study also includes robustness and actuator saturation analysis to provide a comprehensive evaluation of the proposed virtual IDVA. The findings demonstrate that the virtual IDVA offers improved chatter suppression performance, making it a promising solution for active chatter control and application of IDVAs in milling operations.
Original language | English |
---|---|
Article number | 118359 |
Number of pages | 20 |
Journal | Journal of Sound and Vibration |
Volume | 578 |
Early online date | 24 Feb 2024 |
DOIs | |
Publication status | Published - 26 May 2024 |
Data Availability Statement
Data will be made available on request.Keywords
- Active vibration control
- Chatter
- Inerter
- Machining
- Virtual passive absorber
ASJC Scopus subject areas
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Acoustics and Ultrasonics