Analysis of protein glycation using phenylboronate acrylamide gel electrophoresis

M P Pereira Morais, J D Mackay, S K Bhamra, J G Buchanan, T D James, J S Fossey, Jean M H van den Elsen

Research output: Contribution to journalArticlepeer-review

58 Citations (SciVal)


The incorporation of the specialized carbohydrate affinity ligand methacrylamido phenylboronic acid in polyacrylamide gels for SDS-PAGE analysis has been successful for the separation of carbohydrates and has here been adapted for the analysis of post-translationally modified proteins. While conventional SDS-PAGE analysis cannot distinguish between glycated and unglycated proteins, methacrylamido phenylboronate acrylamide gel electrophoresis (mP-AGE) in low loading shows dramatic retention of delta-gluconolactone modified proteins, while the mobility of the unmodified proteins remains unchanged. With gels containing 1% methacrylamido phenylboronate, mP-AGE analysis of gluconoylated recombinant protein Sbi results in the retention of the modified protein at a position expected for a protein that has quadrupled its expected molecular size. Subsequently, mP-AGE was tested on HSA, a protein that is known to undergo glycation under physiological conditions. mP-AGE could distinguish between various carbohydrate-protein adducts, using in vitro glycated HSA, and discriminate early from late glycation states of the protein. Enzymatically glycosylated proteins show no altered retention in the phenylboronate-incorporated gels, rendering this method highly selective for glycated proteins. We reveal that a trident interaction between phenylboronate and the Amadori cis 1,2 diol and amine group provides the molecular basis of this specificity. These results epitomize mP-AGE as an important new proteomics tool for the detection, separation, visualization and identification of protein glycation. This method will aid the design of inhibitors of unwanted carbohydrate modifications in recombinant protein production, ageing, diabetes, cardiovascular diseases and Alzheimer's disease.
Original languageEnglish
Pages (from-to)48-58
Number of pages11
Issue number1
Early online date6 Nov 2009
Publication statusPublished - 1 Jan 2010


  • Glycoproteomics
  • Electrophoresis
  • Protein adducts
  • Glycoproteins
  • Carbohydrate structure
  • Serum proteins


Dive into the research topics of 'Analysis of protein glycation using phenylboronate acrylamide gel electrophoresis'. Together they form a unique fingerprint.

Cite this