Analysis of a shaftless semi-hard magnetic material flywheel on radial hysteresis self-bearing drives

Salvatore Circosta, Angelo Bonfitto, Nicola Amati, Andrea Tonoli, Christopher Lusty, Patrick Keogh

Research output: Contribution to journalArticlepeer-review


Flywheel Energy Storage Systems are interesting solutions for energy storage, featuring advantageous characteristics when compared to other technologies. This has motivated research effort focusing mainly on cost aspects, system reliability and energy density improvement. In this context, a novel shaftless outer-rotor layout is proposed. It features a semi-hard magnetic FeCrCo 48/5 rotor coupled with two bearingless hysteresis drives. The novelty lies in the use of the semi-hard magnetic material, lending the proposed layout advantageous features thanks to its elevated mechanical strength and magnetic properties that enable the use of bearingless hysteresis drives. The paper presents a study of the proposed layout and an assessment of its energetic features. It also focuses on the modeling of the radial magnetic suspension, where the electromagnets providing the levitating forces are modeled through a one-dimensional approach. The Jiles-Atherton model is used to describe the magnetic hysteresis of the rotor material. The proposed flywheel features a mass of 61.2 kg, a storage capability of 600 Wh at the maximum speed of 18000 rpm and achieves an energy density of 9.8Wh/kg. The performance of the magnetic suspension is demonstrated to be satisfactory and the influence of the hysteresis of the rotormaterial is highlighted.
Original languageEnglish
Article numberActuators-382161
Number of pages23
Issue number4
Publication statusPublished - 10 Dec 2018


Dive into the research topics of 'Analysis of a shaftless semi-hard magnetic material flywheel on radial hysteresis self-bearing drives'. Together they form a unique fingerprint.

Cite this