Analysis of a linear walking worker line using a combination of computer simulation and mathematical modeling approaches

Qian Wang, S Lassalle, Antony R Mileham, Geraint W Owen

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

It has become increasingly important in the last few years to develop rapid, dynamic, responsive and reconfigurable manufacturing processes and systems. This is because manufacturing enterprises are now being forced to develop and constantly improve their production systems so that they can quickly and economically react to unpredictable conditions such as varying production volumes and product variants with small lot size, high quality and low costs. One effective method to achieve this is to create a more flexible, highly skilled and agile workforce capable to perform multiple or all the required tasks in a production area where the system can be reconfigured easily as needed to accommodate changes of production requirement on a daily or weekly basis. This paper presents a study of a so-called linear walking worker assembly line based on a combination of computer simulation and mathematical analysis. The linear walking worker assembly line is a flexible assembly system where each worker travels down the line carrying out each assembly task at each station; and each worker accomplishes the assembly of a unit from start to finish. This design attempts to combine the flexibility of the U-shaped moving worker assembly cell with the efficiency of the conventional fixed worker assembly line. The paper aims to evaluate one critical factor of in-progress waiting time that affects the overall system performance providing a dynamic simulation outlook as well as an insight into the mechanism of such a flexible and reconfigurable manufacturing system.
Original languageEnglish
Pages (from-to)64-70
Number of pages7
JournalJournal of Manufacturing Systems
Volume28
Issue number2-3
DOIs
Publication statusPublished - Jul 2009

Fingerprint

Computer simulation
Costs
Industry

Cite this

@article{804dd01b9ca44901a0fe7d62fdd1ecce,
title = "Analysis of a linear walking worker line using a combination of computer simulation and mathematical modeling approaches",
abstract = "It has become increasingly important in the last few years to develop rapid, dynamic, responsive and reconfigurable manufacturing processes and systems. This is because manufacturing enterprises are now being forced to develop and constantly improve their production systems so that they can quickly and economically react to unpredictable conditions such as varying production volumes and product variants with small lot size, high quality and low costs. One effective method to achieve this is to create a more flexible, highly skilled and agile workforce capable to perform multiple or all the required tasks in a production area where the system can be reconfigured easily as needed to accommodate changes of production requirement on a daily or weekly basis. This paper presents a study of a so-called linear walking worker assembly line based on a combination of computer simulation and mathematical analysis. The linear walking worker assembly line is a flexible assembly system where each worker travels down the line carrying out each assembly task at each station; and each worker accomplishes the assembly of a unit from start to finish. This design attempts to combine the flexibility of the U-shaped moving worker assembly cell with the efficiency of the conventional fixed worker assembly line. The paper aims to evaluate one critical factor of in-progress waiting time that affects the overall system performance providing a dynamic simulation outlook as well as an insight into the mechanism of such a flexible and reconfigurable manufacturing system.",
author = "Qian Wang and S Lassalle and Mileham, {Antony R} and Owen, {Geraint W}",
year = "2009",
month = "7",
doi = "10.1016/j.jmsy.2009.12.001",
language = "English",
volume = "28",
pages = "64--70",
journal = "Journal of Manufacturing Systems",
issn = "0278-6125",
publisher = "Elsevier",
number = "2-3",

}

TY - JOUR

T1 - Analysis of a linear walking worker line using a combination of computer simulation and mathematical modeling approaches

AU - Wang, Qian

AU - Lassalle, S

AU - Mileham, Antony R

AU - Owen, Geraint W

PY - 2009/7

Y1 - 2009/7

N2 - It has become increasingly important in the last few years to develop rapid, dynamic, responsive and reconfigurable manufacturing processes and systems. This is because manufacturing enterprises are now being forced to develop and constantly improve their production systems so that they can quickly and economically react to unpredictable conditions such as varying production volumes and product variants with small lot size, high quality and low costs. One effective method to achieve this is to create a more flexible, highly skilled and agile workforce capable to perform multiple or all the required tasks in a production area where the system can be reconfigured easily as needed to accommodate changes of production requirement on a daily or weekly basis. This paper presents a study of a so-called linear walking worker assembly line based on a combination of computer simulation and mathematical analysis. The linear walking worker assembly line is a flexible assembly system where each worker travels down the line carrying out each assembly task at each station; and each worker accomplishes the assembly of a unit from start to finish. This design attempts to combine the flexibility of the U-shaped moving worker assembly cell with the efficiency of the conventional fixed worker assembly line. The paper aims to evaluate one critical factor of in-progress waiting time that affects the overall system performance providing a dynamic simulation outlook as well as an insight into the mechanism of such a flexible and reconfigurable manufacturing system.

AB - It has become increasingly important in the last few years to develop rapid, dynamic, responsive and reconfigurable manufacturing processes and systems. This is because manufacturing enterprises are now being forced to develop and constantly improve their production systems so that they can quickly and economically react to unpredictable conditions such as varying production volumes and product variants with small lot size, high quality and low costs. One effective method to achieve this is to create a more flexible, highly skilled and agile workforce capable to perform multiple or all the required tasks in a production area where the system can be reconfigured easily as needed to accommodate changes of production requirement on a daily or weekly basis. This paper presents a study of a so-called linear walking worker assembly line based on a combination of computer simulation and mathematical analysis. The linear walking worker assembly line is a flexible assembly system where each worker travels down the line carrying out each assembly task at each station; and each worker accomplishes the assembly of a unit from start to finish. This design attempts to combine the flexibility of the U-shaped moving worker assembly cell with the efficiency of the conventional fixed worker assembly line. The paper aims to evaluate one critical factor of in-progress waiting time that affects the overall system performance providing a dynamic simulation outlook as well as an insight into the mechanism of such a flexible and reconfigurable manufacturing system.

UR - http://www.scopus.com/inward/record.url?scp=77951102264&partnerID=8YFLogxK

UR - http://dx.doi.org/10.1016/j.jmsy.2009.12.001

U2 - 10.1016/j.jmsy.2009.12.001

DO - 10.1016/j.jmsy.2009.12.001

M3 - Article

VL - 28

SP - 64

EP - 70

JO - Journal of Manufacturing Systems

JF - Journal of Manufacturing Systems

SN - 0278-6125

IS - 2-3

ER -