TY - JOUR
T1 - AMPA receptor activation promotes non-amyloidogenic amyloid precursor protein processing and suppresses neuronal amyloid-β production
AU - Hoey, Sarah E
AU - Buonocore, Federica
AU - Cox, Carla J
AU - Hammond, Victoria J
AU - Perkinton, Michael S
AU - Williams, Robert J
PY - 2013/10/24
Y1 - 2013/10/24
N2 - Soluble oligomeric amyloid β peptide (Aβ) generated from processing of the amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's Disease (AD) and through actions at glutamatergic synapses affects excitability and plasticity. The physiological control of APP processing is not fully understood but stimulation of synaptic NMDA receptors (NMDAR) can suppress Aβ levels through an ERK-dependent increase in α-secretase activity. AMPA-type glutamate receptors (AMPAR) couple to ERK phosphorylation independently of NMDAR activation raising the possibility that stimulation of AMPAR might similarly promote non-amyloidogenic APP processing. We have tested this hypothesis by investigating whether AMPAR directly regulate APP processing in cultured mouse cortical neurons, by analyzing APP C-terminal fragments (CTFs), soluble APP (sAPP), Aβ levels, and cleavage of an APP-GAL4 reporter protein. We report that direct stimulation of AMPAR increases non-amyloidogenic α-secretase-mediated APP processing and inhibits Aβ production. Processing was blocked by the matrix metalloproteinase inhibitor TAPI-1 but was only partially dependent on Ca(2+) influx and ERK activity. AMPAR can therefore, be added to the repertoire of receptors that couple to non-amyloidogenic APP processing at glutamatergic synapses and thus pharmacological targeting of AMPAR could potentially influence the development and progression of Aβ pathology in AD.
AB - Soluble oligomeric amyloid β peptide (Aβ) generated from processing of the amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's Disease (AD) and through actions at glutamatergic synapses affects excitability and plasticity. The physiological control of APP processing is not fully understood but stimulation of synaptic NMDA receptors (NMDAR) can suppress Aβ levels through an ERK-dependent increase in α-secretase activity. AMPA-type glutamate receptors (AMPAR) couple to ERK phosphorylation independently of NMDAR activation raising the possibility that stimulation of AMPAR might similarly promote non-amyloidogenic APP processing. We have tested this hypothesis by investigating whether AMPAR directly regulate APP processing in cultured mouse cortical neurons, by analyzing APP C-terminal fragments (CTFs), soluble APP (sAPP), Aβ levels, and cleavage of an APP-GAL4 reporter protein. We report that direct stimulation of AMPAR increases non-amyloidogenic α-secretase-mediated APP processing and inhibits Aβ production. Processing was blocked by the matrix metalloproteinase inhibitor TAPI-1 but was only partially dependent on Ca(2+) influx and ERK activity. AMPAR can therefore, be added to the repertoire of receptors that couple to non-amyloidogenic APP processing at glutamatergic synapses and thus pharmacological targeting of AMPAR could potentially influence the development and progression of Aβ pathology in AD.
UR - http://www.scopus.com/inward/record.url?scp=84886302580&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1371/journal.pone.0078155
U2 - 10.1371/journal.pone.0078155
DO - 10.1371/journal.pone.0078155
M3 - Article
C2 - 24205136
SN - 1932-6203
VL - 8
JO - PLoS ONE
JF - PLoS ONE
IS - 10
M1 - e78155
ER -