Alternative splicing: Α potential source of functional innovation in the eukaryotic genome

Lu Chen, Jaime M Tovar-Corona, Araxi O Urrutia

Research output: Contribution to journalArticlepeer-review

156 Downloads (Pure)

Abstract

Alternative splicing (AS) is a common posttranscriptional process in eukaryotic organisms, by which multiple distinct functional transcripts are produced from a single gene. The release of the human genome draft revealed a much smaller number of genes than anticipated. Because of its potential role in expanding protein diversity, interest in alternative splicing has been increasing over the last decade. Although recent studies have shown that 94% human multiexon genes undergo AS, evolution of AS and thus its potential role in functional innovation in eukaryotic genomes remain largely unexplored. Here we review available evidence regarding the evolution of AS prevalence and functional role. In addition we stress the need to correct for the strong effect of transcript coverage in AS detection and set out a strategy to ultimately elucidate the extent of the role of AS in functional innovation on a genomic scale.
Original languageEnglish
Article number596274
Number of pages10
JournalInternational Journal of Evolutionary Biology
Volume2012
DOIs
Publication statusPublished - 2012

Fingerprint

Dive into the research topics of 'Alternative splicing: Α potential source of functional innovation in the eukaryotic genome'. Together they form a unique fingerprint.

Cite this