TY - JOUR
T1 - Altered avr-14B gene transcription patterns in ivermectin-resistant isolates of the cattle parasites, Cooperia oncophora and Ostertagia ostertagi
AU - El-Abdellati, A
AU - De Graef, J
AU - Van Zeveren, A
AU - Donnan, A
AU - Skuce, P
AU - Walsh, T
AU - Wolstenholme, Adrian
AU - Tait, A
AU - Vercruysse, J
AU - Claerebout, E
AU - Geldhof, P
PY - 2011/8/1
Y1 - 2011/8/1
N2 - Ivermectin (IVM) resistance is an emerging problem for the control of gastrointestinal nematodes of cattle such as Cooperia oncophora and Ostertagia ostertagi. Although there is still a poor understanding of the molecular basis of macrocyclic lactone (ML)-resistance, it is clear that IVM exerts its activity by binding to glutamate-gated chloride (GluCl) channels within the parasite's neuromuscular system. One of the GluCl genes (avr-14) encodes, via alternative splicing, two subunits, AVR-14A and AVR-14B; the latter is suggested to be the main target for IVM. The genomic DNA (gDNA) sequence of avr-14 in C. oncophora contains 21 exons separated by 20 introns and spans approximately 10 kb of gDNA. Intron 13 contains a sequence with high homology to a mammalian mariner transposase. The L256F polymorphism in the avr-14 gene, which was shown to be associated with IVM resistance in a UK isolate of C. oncophora, was not found in the IVM-resistant C. oncophora and O. ostertagi isolates investigated in this study. However, genetic analyses on C. oncophora indicated a loss in allelic diversity of the avr-14 gene in the resistant isolates compared with the susceptible isolate. This suggests that the avr-14 gene, or another genetically linked locus, is under selection in these Belgian C. oncophora isolates. Comparison of the full-length avr-14B coding sequence in the susceptible and resistant C. oncophora isolates did not show any polymorphisms specifically linked to IVM resistance, although a decrease in the number of avr-14B isoforms was observed in the resistant isolates compared with the susceptible one. Measuring the transcription levels of avr-14B in adult male and female C. oncophora and O. ostertagi worms showed significantly lower levels in resistant worms compared with susceptible ones. Whether the down-regulation of this IVM target actually contributes to the resistance mechanism in these worms remains unclear.
AB - Ivermectin (IVM) resistance is an emerging problem for the control of gastrointestinal nematodes of cattle such as Cooperia oncophora and Ostertagia ostertagi. Although there is still a poor understanding of the molecular basis of macrocyclic lactone (ML)-resistance, it is clear that IVM exerts its activity by binding to glutamate-gated chloride (GluCl) channels within the parasite's neuromuscular system. One of the GluCl genes (avr-14) encodes, via alternative splicing, two subunits, AVR-14A and AVR-14B; the latter is suggested to be the main target for IVM. The genomic DNA (gDNA) sequence of avr-14 in C. oncophora contains 21 exons separated by 20 introns and spans approximately 10 kb of gDNA. Intron 13 contains a sequence with high homology to a mammalian mariner transposase. The L256F polymorphism in the avr-14 gene, which was shown to be associated with IVM resistance in a UK isolate of C. oncophora, was not found in the IVM-resistant C. oncophora and O. ostertagi isolates investigated in this study. However, genetic analyses on C. oncophora indicated a loss in allelic diversity of the avr-14 gene in the resistant isolates compared with the susceptible isolate. This suggests that the avr-14 gene, or another genetically linked locus, is under selection in these Belgian C. oncophora isolates. Comparison of the full-length avr-14B coding sequence in the susceptible and resistant C. oncophora isolates did not show any polymorphisms specifically linked to IVM resistance, although a decrease in the number of avr-14B isoforms was observed in the resistant isolates compared with the susceptible one. Measuring the transcription levels of avr-14B in adult male and female C. oncophora and O. ostertagi worms showed significantly lower levels in resistant worms compared with susceptible ones. Whether the down-regulation of this IVM target actually contributes to the resistance mechanism in these worms remains unclear.
KW - GluCl channels
KW - resistance
KW - cattle
KW - cooperia oncophora
KW - ostertagia ostertagi
UR - http://www.scopus.com/inward/record.url?scp=79960555247&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1016/j.ijpara.2011.04.003
U2 - 10.1016/j.ijpara.2011.04.003
DO - 10.1016/j.ijpara.2011.04.003
M3 - Article
SN - 0020-7519
VL - 41
SP - 951
EP - 957
JO - International Journal for Parasitology
JF - International Journal for Parasitology
IS - 9
ER -