TY - JOUR
T1 - Alteration of the co-substrate selectivity of deacetoxycephalosporin C synthase
T2 - The role of arginine 258
AU - Lee, Hwei-Jen
AU - Lloyd, Matthew D.
AU - Clifton, Ian J.
AU - Harlos, Karl
AU - Dubus, Alain
AU - Baldwin, Jack E.
AU - Frere, Jean Marie
AU - Schofield, Christopher J.
PY - 2001/1/25
Y1 - 2001/1/25
N2 - Deacetoxycephalosporin C synthase is an iron(II) 2-oxoglutaratedependent oxygenase that catalyzes the oxidative ring-expansion of penicillin N to deacetoxycephalosporin C. The wild-type enzyme is only able to efficiently utilize 2-oxoglutarate and 2-oxoadipate as a 2-oxoacid co-substrate. Mutation of arginine 258, the side chain of which forms an electrostatic interaction with the 5-carboxylate of the 2-oxoglutarate co-substrate, to a glutamine residue reduced activity to about 5% of the wild-type enzyme with 2-oxoglutarate. However, other aliphatic 2-oxoacids, which were not cosubstrates for the wild-type enzyme, were utilized by the R258Q mutant. These 2-oxoacids "rescued" catalytic activity to the level observed for the wild-type enzyme as judged by penicillin N and G conversion. These cosubstrates underwent oxidative decarboxylation as observed for 2-oxoglutarate in the normal reaction with the wild-type enzyme. Crystal structures of the iron(II)-2-oxo-3-methylbutanoate (1.5 Å), and iron(II)-2-oxo-4-methylpentanoate (1.6 Å) enzyme complexes were obtained, which reveal the molecular basis for this "chemical co-substrate rescue" and help to rationalize the co-substrate selectivity of 2-oxoglutaratedependent oxygenases.
AB - Deacetoxycephalosporin C synthase is an iron(II) 2-oxoglutaratedependent oxygenase that catalyzes the oxidative ring-expansion of penicillin N to deacetoxycephalosporin C. The wild-type enzyme is only able to efficiently utilize 2-oxoglutarate and 2-oxoadipate as a 2-oxoacid co-substrate. Mutation of arginine 258, the side chain of which forms an electrostatic interaction with the 5-carboxylate of the 2-oxoglutarate co-substrate, to a glutamine residue reduced activity to about 5% of the wild-type enzyme with 2-oxoglutarate. However, other aliphatic 2-oxoacids, which were not cosubstrates for the wild-type enzyme, were utilized by the R258Q mutant. These 2-oxoacids "rescued" catalytic activity to the level observed for the wild-type enzyme as judged by penicillin N and G conversion. These cosubstrates underwent oxidative decarboxylation as observed for 2-oxoglutarate in the normal reaction with the wild-type enzyme. Crystal structures of the iron(II)-2-oxo-3-methylbutanoate (1.5 Å), and iron(II)-2-oxo-4-methylpentanoate (1.6 Å) enzyme complexes were obtained, which reveal the molecular basis for this "chemical co-substrate rescue" and help to rationalize the co-substrate selectivity of 2-oxoglutaratedependent oxygenases.
UR - http://www.scopus.com/inward/record.url?scp=0035947653&partnerID=8YFLogxK
U2 - 10.1074/jbc.M100085200
DO - 10.1074/jbc.M100085200
M3 - Article
C2 - 11279000
AN - SCOPUS:0035947653
SN - 0021-9258
VL - 276
SP - 18290
EP - 18295
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 21
ER -