Abstract
We demonstrate that the linear quotient singularity for the exceptional subgroup G in Sp(4,C) of order 32 is isomorphic to an affine quiver variety for a 5-pointed star-shaped quiver. This allows us to construct uniformly all 81 projective crepant resolutions of the quotient singularity C4/G as hyperpolygon spaces by variation of GIT quotient, and we describe both the movable cone and the Namikawa Weyl group action via an explicit hyperplane arrangement. More generally, for the n-pointed star shaped quiver, we describe completely the birational geometry for the corresponding hyperpolygon spaces in dimension 2n - 6; for example, we show that there are 1684 projective crepant resolutions when n = 6. We also prove that the resulting affine cones are not quotient singularities for n >= 6.
Original language | English |
---|---|
Pages (from-to) | 757-793 |
Number of pages | 30 |
Journal | Journal of Algebraic Geometry |
Volume | 33 |
Issue number | 4 |
Early online date | 1 Apr 2024 |
DOIs | |
Publication status | E-pub ahead of print - 1 Apr 2024 |
Funding
Supported in part by Research Project Grant RPG-2021-149 from The Leverhulme Trust.
Funders | Funder number |
---|---|
The Leverhulme Trust | RPG-2021-149 |