Aerodynamic optimization of the high pressure turbine and interstage duct in a two-stage air system for a heavy-duty diesel engine

Uswah B. Khairuddin, Aaron W. Costall

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Turbochargers reduce fuel consumption and CO2 emissions from heavy-duty internal combustion engines by enabling downsizing and downspeeding through greater power density. This requires greater pressure ratios and thus air systems with multiple stages and interconnecting ducting, all subject to tight packaging constraints. This paper considers the aerodynamic optimization of the exhaust side of a two-stage air system for a Caterpillar 4.41 heavy-duty diesel engine, focusing on the high pressure turbine (HPT) wheel and interstage duct (ISD). Using current production designs as a baseline, a genetic algorithm (GA)-based aerodynamic optimization process was carried out separately for the wheel and duct components to evaluate seven key operating points. While efficiency was a clear choice of cost function for turbine wheel optimization, different objectives were explored for ISD optimization to assess their impact. Optimized designs are influenced by the engine operating point, so each design was evaluated at every other engine operating point, to determine which should be carried forward. Prototypes of the best compromise high pressure turbine wheel and ISD designs were manufactured and tested against the baseline to validate computational fluid dynamics (CFD) predictions. The best performing high pressure turbine design was predicted to show an efficiency improvement of 2.15% points, for on-design operation. Meanwhile, the optimized ISD contributed a 0.2% and 0.5% point efficiency increase for the HPT and low pressure turbine (LPT), respectively.

Original languageEnglish
Article number052801
JournalJournal of Engineering for Gas Turbines and Power
Volume140
Issue number5
DOIs
Publication statusPublished - May 2018

ASJC Scopus subject areas

  • Nuclear Energy and Engineering
  • Fuel Technology
  • Aerospace Engineering
  • Energy Engineering and Power Technology
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Aerodynamic optimization of the high pressure turbine and interstage duct in a two-stage air system for a heavy-duty diesel engine'. Together they form a unique fingerprint.

Cite this