Abstract
Due to the high complexity of CAD, much work has been done to improve its performance. In this thesis new advances will be discussed that improve the practical efficiency of CAD for a variety of problems, with a new complexity result for one set of algorithms.
A new invariance condition, truth table invariance (TTICAD), and two algorithms to construct TTICADs are given and shown to be highly efficient. The idea of restricting the output of CADs, allowing for greater efficiency, is formalised as subdecompositions and two particular ideas are investigated in depth. Efficient selection of various formulation choices for a CAD problem are discussed, with a collection of heuristics investigated and machine learning applied to assist in choosing an optimal heuristic. The mathematical expression of a problem is shown to be of great importance, with preconditioning and reformulation investigated.
Finally, these advances are collected together in a general framework for applying CAD in an efficient manner to a given problem. It is shown that their combination is not cumulative and care must be taken. To this end, a prototype software CADassistant is described to help users take advantage of the advances without knowledge of the underlying theory.
The effects of the various advances are demonstrated through a guiding example originally considered by Solotareff, which describes the approximation of a cubic polynomial by a linear function. Naïvely applying CAD to the problem takes 916.1 seconds of construction (from which a solution can easily be derived), which is reduced to 20.1 seconds by combining various advances from this thesis.
Language  English 

Qualification  Ph.D. 
Awarding Institution 

Supervisors/Advisors 

Award date  24 Dec 2014 
Status  Unpublished  Jul 2014 
Fingerprint
Keywords
 Cylindrical Algebraic Decomposition
 Computer Algebra
 Real Algebraic Geometry
Cite this
Advances in Cylindrical Algebraic Decomposition. / Wilson, David.
2014. 348 p.Research output: Thesis › Doctoral Thesis
}
TY  THES
T1  Advances in Cylindrical Algebraic Decomposition
AU  Wilson, David
PY  2014/7
Y1  2014/7
N2  Since their conception by Collins in 1975, Cylindrical Algebraic Decompositions (CADs) have been used to analyse the real algebraic geometry of systems of polynomials. Applications for CAD technology range from quantifier elimination to robot motion planning. Although of great use in practice, the CAD algorithm was shown to have doubly exponential complexity with respect to the number of variables for the problem, which limits its use for large examples.Due to the high complexity of CAD, much work has been done to improve its performance. In this thesis new advances will be discussed that improve the practical efficiency of CAD for a variety of problems, with a new complexity result for one set of algorithms.A new invariance condition, truth table invariance (TTICAD), and two algorithms to construct TTICADs are given and shown to be highly efficient. The idea of restricting the output of CADs, allowing for greater efficiency, is formalised as subdecompositions and two particular ideas are investigated in depth. Efficient selection of various formulation choices for a CAD problem are discussed, with a collection of heuristics investigated and machine learning applied to assist in choosing an optimal heuristic. The mathematical expression of a problem is shown to be of great importance, with preconditioning and reformulation investigated.Finally, these advances are collected together in a general framework for applying CAD in an efficient manner to a given problem. It is shown that their combination is not cumulative and care must be taken. To this end, a prototype software CADassistant is described to help users take advantage of the advances without knowledge of the underlying theory.The effects of the various advances are demonstrated through a guiding example originally considered by Solotareff, which describes the approximation of a cubic polynomial by a linear function. Naïvely applying CAD to the problem takes 916.1 seconds of construction (from which a solution can easily be derived), which is reduced to 20.1 seconds by combining various advances from this thesis.
AB  Since their conception by Collins in 1975, Cylindrical Algebraic Decompositions (CADs) have been used to analyse the real algebraic geometry of systems of polynomials. Applications for CAD technology range from quantifier elimination to robot motion planning. Although of great use in practice, the CAD algorithm was shown to have doubly exponential complexity with respect to the number of variables for the problem, which limits its use for large examples.Due to the high complexity of CAD, much work has been done to improve its performance. In this thesis new advances will be discussed that improve the practical efficiency of CAD for a variety of problems, with a new complexity result for one set of algorithms.A new invariance condition, truth table invariance (TTICAD), and two algorithms to construct TTICADs are given and shown to be highly efficient. The idea of restricting the output of CADs, allowing for greater efficiency, is formalised as subdecompositions and two particular ideas are investigated in depth. Efficient selection of various formulation choices for a CAD problem are discussed, with a collection of heuristics investigated and machine learning applied to assist in choosing an optimal heuristic. The mathematical expression of a problem is shown to be of great importance, with preconditioning and reformulation investigated.Finally, these advances are collected together in a general framework for applying CAD in an efficient manner to a given problem. It is shown that their combination is not cumulative and care must be taken. To this end, a prototype software CADassistant is described to help users take advantage of the advances without knowledge of the underlying theory.The effects of the various advances are demonstrated through a guiding example originally considered by Solotareff, which describes the approximation of a cubic polynomial by a linear function. Naïvely applying CAD to the problem takes 916.1 seconds of construction (from which a solution can easily be derived), which is reduced to 20.1 seconds by combining various advances from this thesis.
KW  Cylindrical Algebraic Decomposition
KW  Computer Algebra
KW  Real Algebraic Geometry
M3  Doctoral Thesis
ER 