Advanced avionics applications simulation platform (AAASP) for accurate aircraft systems simulation

Peter R. Wilson, Jonathan Storey

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)
81 Downloads (Pure)

Abstract

A persistent problem for Aircraft Manufacturers has been the difficulty in carrying out accurate and robust simulations of the complete aircraft power network, while including numerous models from a variety of individual equipment suppliers. Often the models are of variable or low quality, with ill-defined parameters or behavior, and in many cases of the wrong level of abstraction to be appropriate for large scale network simulations. In addition, individual equipment suppliers often provide poor models for network integration, with a common issue being low robustness of models leading to lack of convergence, excessive simulation times and delays in development due to the need for rework and extensive testing of these models.
In order to address this specific issue a complete library of power electronic system models for Aerospace applications has been developed that encompasses the range of functions from elementary components (passives, devices, switches and magnetic components), intermediate building blocks (rectifiers, inverters, motors, protection devices) and finally complete system models (variable frequency starter generators, power converters, battery and storage elements, transformers). These models have been developed in partnership with several key aircraft equipment suppliers and in partnership with Airbus to ensure that the resulting models are complete and robust. Specific equipment models were also developed in this library including permanent magnet generators, synchronous machines, environmental control systems, wing ice protection systems, power electronic modules and advanced power protection systems. The specific models have been validated against reference and measured data to ensure that they are consistent and accurate.
This paper will describe the techniques used to achieve more robust models, using model based engineering, the integration of specific equipment models into the complete aircraft network and the validation of the behavior against measured results. The paper will provide the results of a complete aircraft power network highlighting how the individual models are integrated into the overall network model and the inherent robustness ensure effective, accurate and robust simulations.
Original languageEnglish
Title of host publicationIEEE Aerospace Conference (AERO), 2016
PublisherIEEE
ISBN (Print)9781467376761
DOIs
Publication statusPublished - 9 Mar 2016

Fingerprint

Avionics
Aircraft
Power electronics
Aircraft parts and equipment
Starters
Aerospace applications
Synchronous generators
Power converters
Permanent magnets
Ice

Cite this

Advanced avionics applications simulation platform (AAASP) for accurate aircraft systems simulation. / Wilson, Peter R.; Storey, Jonathan.

IEEE Aerospace Conference (AERO), 2016. IEEE, 2016. 7500929.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

@inproceedings{a8fce64fd23d43f4bf6605d7fe343f77,
title = "Advanced avionics applications simulation platform (AAASP) for accurate aircraft systems simulation",
abstract = "A persistent problem for Aircraft Manufacturers has been the difficulty in carrying out accurate and robust simulations of the complete aircraft power network, while including numerous models from a variety of individual equipment suppliers. Often the models are of variable or low quality, with ill-defined parameters or behavior, and in many cases of the wrong level of abstraction to be appropriate for large scale network simulations. In addition, individual equipment suppliers often provide poor models for network integration, with a common issue being low robustness of models leading to lack of convergence, excessive simulation times and delays in development due to the need for rework and extensive testing of these models. In order to address this specific issue a complete library of power electronic system models for Aerospace applications has been developed that encompasses the range of functions from elementary components (passives, devices, switches and magnetic components), intermediate building blocks (rectifiers, inverters, motors, protection devices) and finally complete system models (variable frequency starter generators, power converters, battery and storage elements, transformers). These models have been developed in partnership with several key aircraft equipment suppliers and in partnership with Airbus to ensure that the resulting models are complete and robust. Specific equipment models were also developed in this library including permanent magnet generators, synchronous machines, environmental control systems, wing ice protection systems, power electronic modules and advanced power protection systems. The specific models have been validated against reference and measured data to ensure that they are consistent and accurate.This paper will describe the techniques used to achieve more robust models, using model based engineering, the integration of specific equipment models into the complete aircraft network and the validation of the behavior against measured results. The paper will provide the results of a complete aircraft power network highlighting how the individual models are integrated into the overall network model and the inherent robustness ensure effective, accurate and robust simulations.",
author = "Wilson, {Peter R.} and Jonathan Storey",
year = "2016",
month = "3",
day = "9",
doi = "10.1109/AERO.2016.7500929",
language = "English",
isbn = "9781467376761",
booktitle = "IEEE Aerospace Conference (AERO), 2016",
publisher = "IEEE",
address = "USA United States",

}

TY - GEN

T1 - Advanced avionics applications simulation platform (AAASP) for accurate aircraft systems simulation

AU - Wilson, Peter R.

AU - Storey, Jonathan

PY - 2016/3/9

Y1 - 2016/3/9

N2 - A persistent problem for Aircraft Manufacturers has been the difficulty in carrying out accurate and robust simulations of the complete aircraft power network, while including numerous models from a variety of individual equipment suppliers. Often the models are of variable or low quality, with ill-defined parameters or behavior, and in many cases of the wrong level of abstraction to be appropriate for large scale network simulations. In addition, individual equipment suppliers often provide poor models for network integration, with a common issue being low robustness of models leading to lack of convergence, excessive simulation times and delays in development due to the need for rework and extensive testing of these models. In order to address this specific issue a complete library of power electronic system models for Aerospace applications has been developed that encompasses the range of functions from elementary components (passives, devices, switches and magnetic components), intermediate building blocks (rectifiers, inverters, motors, protection devices) and finally complete system models (variable frequency starter generators, power converters, battery and storage elements, transformers). These models have been developed in partnership with several key aircraft equipment suppliers and in partnership with Airbus to ensure that the resulting models are complete and robust. Specific equipment models were also developed in this library including permanent magnet generators, synchronous machines, environmental control systems, wing ice protection systems, power electronic modules and advanced power protection systems. The specific models have been validated against reference and measured data to ensure that they are consistent and accurate.This paper will describe the techniques used to achieve more robust models, using model based engineering, the integration of specific equipment models into the complete aircraft network and the validation of the behavior against measured results. The paper will provide the results of a complete aircraft power network highlighting how the individual models are integrated into the overall network model and the inherent robustness ensure effective, accurate and robust simulations.

AB - A persistent problem for Aircraft Manufacturers has been the difficulty in carrying out accurate and robust simulations of the complete aircraft power network, while including numerous models from a variety of individual equipment suppliers. Often the models are of variable or low quality, with ill-defined parameters or behavior, and in many cases of the wrong level of abstraction to be appropriate for large scale network simulations. In addition, individual equipment suppliers often provide poor models for network integration, with a common issue being low robustness of models leading to lack of convergence, excessive simulation times and delays in development due to the need for rework and extensive testing of these models. In order to address this specific issue a complete library of power electronic system models for Aerospace applications has been developed that encompasses the range of functions from elementary components (passives, devices, switches and magnetic components), intermediate building blocks (rectifiers, inverters, motors, protection devices) and finally complete system models (variable frequency starter generators, power converters, battery and storage elements, transformers). These models have been developed in partnership with several key aircraft equipment suppliers and in partnership with Airbus to ensure that the resulting models are complete and robust. Specific equipment models were also developed in this library including permanent magnet generators, synchronous machines, environmental control systems, wing ice protection systems, power electronic modules and advanced power protection systems. The specific models have been validated against reference and measured data to ensure that they are consistent and accurate.This paper will describe the techniques used to achieve more robust models, using model based engineering, the integration of specific equipment models into the complete aircraft network and the validation of the behavior against measured results. The paper will provide the results of a complete aircraft power network highlighting how the individual models are integrated into the overall network model and the inherent robustness ensure effective, accurate and robust simulations.

UR - http://dx.doi.org/10.1109/AERO.2016.7500929

U2 - 10.1109/AERO.2016.7500929

DO - 10.1109/AERO.2016.7500929

M3 - Conference contribution

SN - 9781467376761

BT - IEEE Aerospace Conference (AERO), 2016

PB - IEEE

ER -